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Preface

There are many ways to represent a phenomenon in various ways. Authors
of each book would like to find the best way to represent their ideas to convey
them as clear as possible. As an unexpected result, we often face different types
of notations and definitions describing the same concept. It makes us difficult
to grasp the concept of the terms.

Differential geometry is not an exception, especially, semi-Riemannian geome-
try due to its inter-disciplinary nature. Terms used in physics are not defined
in the same way as in mathematics, vice versa. I believe that it would be helpful
to have a collection of terminologies described in a uniform idea and notions.
I collected and re-wrote terminologies used in differential geometry, especially
in differential topology and semi-Riemannian manifolds. Some terms used in
relativity and gravitation were added to this book and were represented in
mathematical viewpoints rather than in physical viewpoints, since physical
representations often become a barrier for mathematicians to understand the
underlying mathematical meaning.

A number of papers and books on semi-Riemannian geometry, differential
topology, relativity and gravitation were reviewed for this book. Among them,
the notations and definitions of Barret O’Neill’s seminal book Semi-Riemannian
Geometry (Academic Press, 1983) became a basis of representing terminologies
in this book. For terms not covered by the O’Neill’s book, I tried to describe
them in the way represented in his book as consistent as possible.

I wish this book would be any help for readers who study differential geome-
try and its applications.

J.-H. Lee

Taejon, Korea
March, 1993



A
abstract simplicial complex An abstract simplicial complex is a collection S of

finite nonempty sets such that ifA is an element ofS, so is every nonempty
subset of A. The element A of S is called a simplex of S; its dimension
is one less than the number of its element. Each nonempty subset of A
is called a face of A. The faces of A different from A itself are called the
proper faces of A and their union is called the boundary of A and denoted
by bdA. The vertex set V of S is the union of one­point elements of S. A
subcollection of S that is itself a complex is called a subcomplex of S.

acausal A subset A of M is acusal, provided that the relation p < q never holds
for p, q ∈ A, that is, provided that no causal curve meets A more than
once.
facta. This is stronger requirement than achronality.

achronal A subset A of M is achronal, provided that the relation p ≪ q never
holds for p, q ∈ A, that is, provided that no timelike curve meets A more
than once.
facta. In Rn1 , a hyperplane t constant is achronal.

action refer to energy

action of Lie group A (left) action of a Lie group G on a manifold M is a smooth
map G×M−→M , denoted by (g, p)→gp, such that

i. (gh)p = g(hp) for all g, h ∈ G and p ∈M .

ii. ep = p for all p ∈M , where e is the identity element of G.

Here G is also called a Lie transformation group on M . An action G ×
M−→M is transitive provided that for each p, q ∈ M , there is a g ∈ G
such that gp = q. If G ×M−→M is an action and p a point in M , then
H = {g ∈ G : gp = p} is a closed subgroup of G called the isotropy
subgroup at p.

adapted normal neighborhood A convex normal neighborhood U of M with
compact closure U is called an adapted normal neighborhood if U is covered
by adapted coordinates (xi)1≤i≤n which are adapted at some point of U
such that the followings hold:

i. At every point of U , the components gij of the metric tensor g

expressed in the given coordinates (xi)1≤i≤n differ from the matrix
diag{−1,+1, . . . ,+1} by at most 1/2.

ii. The metric g satisfies g <U g0, where g0 is Minkowski metric ds2 =
−2dx2

1 + · · ·+ dx2
n for U .
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Ad(H)­invariant Let H be a subgroup of G. An object defined on the Lie
algebra g of G is Ad(H)­invariant if it is preserved by Adh : g−→g for all
h ∈ H .

adjoint mapping Ada refer to adjoint representation of Lie group

adjoint representation of a Lie group Let G be a Lie group and a ∈ G. Let
Ca : G−→G be the function sending each g to aga−1. Then Ca is an
automorphism. The differential of Ca is denoted by Ada and is called an
adjoint mapping. Then Cab = Ca ◦ Cb. The homomorphism a 7→ Ada is
called the adjoint representation of G.

adjunction space Let X and Y be disjoint topological spaces and let A be a
closed subset of X . If f : A−→Y is a continuous map, let’s consider a
quotient space like below:
Topologize X ∪ Y as the topological sum. Form a quotient space by
identifying each set

{y} ∪ f−1(y)

for y ∈ Y , to a point. That is, partition X ∪ Y into these sets, along with
the one­point sets {x}, for x ∈ X − A. This quotient space is denoted by
X ∪f Y and is called the adjoint space determined by f .

admissible class of spaces LetAbe a class of pairs (X,A) of topological spaces
such that

i. If (X,A) belongs to A, so do (X,X), (X, ∅), (A,A) and (A, ∅).
ii. If (X,A) belongs to A, so does (X × I, A× I).

iii. There is an one­point space P such that (P, ∅) is in A.

Then A is called an admissible class of spaces for a homology theory.

Ado’s theorem There is an one­to­one correspondence between isomorphism
classes of Lie algebras and isomorphism classes of simply connected Lie
groups.

affine parameter Any parameter which makes a smooth curve a geodesic is
called an affine parameter.

affine transform An affine transformation T of Rn is a map that is a composition
of translations (i.e., maps of the form T (x) = x + p for fixed p) and
nonsingular linear transformations.

Alexander duality Let n be fixed. There is a function assigning to each proper
nonempty polyhedron A in Sn, an isomorphism

αA : H̃k(A)−→H̃n−k−1(S
n −A).

This assignment is natural with respect to inclusions.
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Alexander­Pontrjagin duality Let A be a proper nonempty closed subset of
Sn. Then

Ȟk(A) ≃ H̃n−k−1(S
n −A),

where Ȟk(A) is a Čech cohomology group and H̃n−k−1(S
n − A) is a

singular homology group.

Alexander­Spanier cohomology Let M be a paracompact Housdorff space
andK a fixed principal ideal domain. Now define the classical Alexander­
Spanier cohomology modules of M with coefficients in a K­module G. Let
Ap(U,G) denote the K­module of functions Up+1−→G and let

Ap0 (M,G) = {f ∈ Ap(M,G) : ρm,M (f) = 0 for all m ∈M} .

Define a homomorphism

d : Ap(M,G)−→Ap+1(M,G)

by

df(m0, . . . ,mp+1) =

p+1∑

i=0

(−1)if(m0, . . . , m̂i, . . . ,mp+1)

for each f ∈ Ap(M,G) and (m0, . . . ,mp+1) ∈Mp+2, wherêover an entry
means that this entry is to be omitted. Then this homomorphism restricted

to Ap0 (M,G) has range in Ap+1
0 (M,G) and thus yields homomorphisms

on quotients

Ap(M,G)/Ap0 (M,G)−→Ap+1(M,G)/Ap+1
0 (M,G).

Above sequence of modules and homomorphisms for p ≥ 0 form a
cochain complex which we shall denote by A⋆(M,G)/A⋆0 (M,G) and in
which the modules of q cochaons for q < 0 are as usual, all assumed to be
zero. The classical cohomology modules forM with coefficient in theK­module
G are given by

Hq
A−S(M ;G) = Hq(A⋆(M,G)/A⋆0 (M,G)).

facta. When G = M ×G, we have canonical isomorphisms

Hq
A−S(M ;G) ≃ Hq(M,G).

Alexandrov topology The Alexandrov topology on an arbitrary spacetime (M, g) is
the topology givenM by taking as a basis all sets of the type I+(p)∩I−(q),
for p, q ∈M .
rel. strong causality condition
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I  (p)     I  (q)+ U -

alternating multilinear map A multilinear map

h : V × · · · × V︸ ︷︷ ︸
r­times

−→W

is called alternating if

h(vπ(1), . . . , vπ(r)) = (sgn π)h(v1, . . . , vr)

for v1, . . . , vn ∈ V and all permutations π in the permutation group Sr on
r letters. The sign of the permutations π is

sgn π =

{
+1 if π is even,
−1 if π is odd.

analytic extension of a manifold refer to extension of a manifold

angular momentum Letα be a particle with massm≪ M in R3, where M is the

mass of the sun. Then the vector field L̃ = α×α′ is the angular momentum
vector of α per unit mass.

facta. If L̃ = 0, then α lies in a line through the origin, hence we can
assume that α lies in the xy­plane of R3. Then the angular momentum of α

per unit mass is the number L such that L̃ = L∂z .

anti­derivation in exterior algebra refer to exterior algebra endomorphisms

anti­isometry refer to homothety

antipodal map The antipodal map a : Sn−→Sn is the map defined by a(x) = −x
for all x. And the degree of antipodal map is (−1)n+1.

antipode­preserving map A map f : Sn−→Sn is said to be antipodal­preserving
if f(−x) = −f(x) for all x in Sn.
cf. antipodal map

arclength Let α : [a, b]−→M be a piecewise smooth curve segment in a semi­
Riemannian manifold M . The arclength of α is

L(α) =

∫ a

b

|α′(s)|ds.
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asymptotically stable point Let p be a critical point of vector field X . Then p
is asymptotically stable if there is a neighborhood V of p such that if q ∈ V ,
then q is complete to positive direction, ψt(V ) ⊂ ψs(V ) if t > s and

lim
t→+∞

ψt(V ) = {p}.

That is, for any neighborhood U of p, there is a number T such that
ψt(V ) ⊂ U if t ≥ T .
rel. stable point

atlas An atlas A of dimension n on a space S is a collection of n ­dimensional
coordinate systems in S such that

i. each point of S is contained in the domain of some coordinate system
in V ,

ii. any two coordinate systems in A overlap smoothly.

augmentation map Let K be a complex and Cp(K) a group of p­chains. Let
ǫ : C0(K)−→Z be the surjective homomorphism defined by ǫ(v) = 1 for
each vertex v ofK . Then if c is a 0­chain, ǫ(c) equals the sum of the values
of c on the vertices of K . The map ǫ is called an augmentation map for

C0(K). The reduced homology group H̃0(K) of K in dimension zero is deined
by

H̃0(K) = kerǫ/im∂1.

If p > 0, we let H̃p(K) denote the usual homology group Hp(K).

automorphism of a Lie group An automorphism of a Lie group G is a map φ :
G−→G that is both a diffeomorphism and a group isomorphism.

Axiom of compact support refer to homology theory
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B
baby ham sandwich theorem LetA1 andA2 be two bounded measurable sub­

sets of R2. There is a line in R2 that bisects both A1 and A2.

backward Schwarz inequality Let v and w be timelike vectors in a Lorentz
vector space . Then

|〈v, w〉| ≥ |v| |w| ,
with equality if and only if v and w are collinear. This inequality is called
backward Schwarz inequality. Sometimes this inequality is called the reverse
Schwarz inequality.

backward triangle inequality Let v and w be timelike vectors in a Lorentz
vector space . If v and w are in the same timecone, then

|v|+ |w| ≤ |v + w|

with equality if and only if v and w are collinear. This inequality is called
backward triangle inequality. In terms of Lorentzian distance function d,
this inequality would be expressed by

d(p, q) ≥ d(p, r) + d(r, q)

whenever p ≤ r ≤ q. Sometimes this inequality is called the reverse
triangle inequality (RTI).

b.a.complete A spacetime (M,g) is called b.a.complete if all future [past] point­
ing, future [past] inextendible unit speedC2 timelike curves with bounded
acceleration have infinite length. If there exists a future [past] pointing,
future [past] inextendible unit speed C2 timelike curve with bounded
acceleration but finite length, then (M,g) is called b.a.incomplete.

b.a.incomplete refer to b.a.complete

Baire category theorem Every complete pseudometric space is a Baire space.

Baire space Let X be a topological space and A ⊂ X . Then A is called residual
if A is the intersection of a countable family of open dense subsets of X .
A space X is called a Baire space if every residual set is dense.

barycentric coordinate If x is a point of the polyhedron |K|, then x is interior
to precisely one simplex of K , whose vertices are (say) a0, . . . , an. Then

x =

n∑

i=0

tiai,
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where ti > 0 for each i and
∑
ti = 1. If v is an arbitrary vertex of K ,

we define the barycentric coordinate tv(x) of x with respect to v by setting
tv(x) = 0 if v is not one of the vertices ai and tv(x) = ti if v = ai.
cf. n­simplex

base curve refer to variation

base manifold refer to vector bundle

base of the cone refer to cone on a complex

basis Let S be a topological space. Then a basis for the topology is a collection
B of open sets such that every open sets of S is a union of elements of B.

b­boundary extension Let γ : [0, a)−→M be a b­incomplete curve which is not
extendible to t = a in M . A local b­boundary extension about γ is an open

neighborhood U ⊂ M of γ and an extension Ũ of U such that the image

of γ in Ũ is inextendible continuously beyond t = a.

b­complete The spacetime (M,g) is called b­complete if everyC1 curve of finite
arclength as measured by a generalized affine parameter has an endpoint
in M .

Betti number refer to Fundamental theorem of finitely generated abelian groups

(first) Bianchi identity refer to Lie bracket

(second) Bianchi identity If x, y, z ∈ TpM , the equation

(DzR)(x, y) + (DxR)(y, z) + (DyR)(z, x) = 0

holds and is called the second Bianchi identity.

big bang An initial singularity of Robertson­Walker spacetime M(k, f) at t⋆ is
a big bang provided f→0 and f ′→∞ as t→t⋆. Similarly, a final singularity
is a big crunch if f→0 and f ′→−∞ as t→t⋆, where I = (t⋆, t

⋆).

big crunch refer to big bang

bi­invariant refer to left­invariant

bilinear form A bilinear for on a vector space V is an R­bilinear function b :
V × V−→R.
facta. A bilinear for is a (0,2) tensor field .

Bochner’s theorem On a compact Riemannian manifold with Ric < 0, every
Killing vector field is identically zero.

Bolzano­Weierstrass theorem If S is a first countable space and is compact,
then every sequence has a convergent subsequence.
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Borsuk­Ulam theorem Ifh : Sn−→Rn is a continuous map, thenh(x) = h(−x)
for at least one x ∈ Sn.

boundary in homology refer to chain complex

boundary of a manifold Let M be an n­manifold with boundary. If the point
p in M maps to a point of bdHn under one coordinate system about p,
then it maps to a point of bdHn under such coordinate system. Such a
point is called the boundary of M and is denoted by bdM or ∂M . The
space “M − bdM” is called the interior of M and denoted by int M .
rel. manifold with boundary

boundary of a set Let S be a topological space and A ⊂ S. The boundary of A,
denoted bdA, is defined by

bdA = A ∩ CA.

facta. bdA is closed and bdA = bdCA.

boundary of a simplex refer to abstract simplicial complex

boundary operator refer to chain complex

bounded acceleration A C2 timelike curve γ : I−→M with g(γ′(t), γ′(t)) =
−1 for all t ∈ I is said to have bounded acceleration if there is a constant
B > 0 such that |g(Dγ′γ′(t), Dγ′γ′(t))| ≤ B for all t ∈ I . Here D is the
unique torsion­free connection for M defined by the metric g.

bounded chain refer to homologous chains

bracket operation refer to Lie algebra

Brouwer fixed­point theorem Every continuous mapφ : Bn−→Bn has a fixed­
point.

bump function Given any neighborhood U of a point p in M , there is a func­
tion f ∈ F(M), called bump function at p such that

i. 0 ≤ f ≤ 1 on M ,

ii. f = 1 on some neighborhood of p,

iii. suppf ⊂ U .

rel. partition of unity

bundle chart refer to vector bundle
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Busemann function Let γ : I−→M be a piecewise smooth timelike curve. The
(future/past) Busemann functions b±γ : J∓(γ)−→R ∪ {∓∞} of γ are defined
by

b+γ (p) = inf
t∈I

b+γ,t(p), (future Busemann function)

and
b−γ (q) = sup

t∈I
b−γ,t(q). (past Busemann function)

rel. pre­Busemann function
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C
canonical projection refer to equivalence relation

Cartan lemma Let p ≤ d and let ω1, . . . , ωn be one­forms on d­manifold M
which are linearly independent pointwise. Let θ1, . . . , θp be one­forms on
M such that

p∑

i=1

θi ∧ ωi = 0.

Then there exist smooth functions Aij on M with Aij = Aji such that

θi =

p∑

j=1

Aijωj

for i = 1, . . . , p.

category A category C consists of three things:

i. A class of objects X .

ii. For every ordered pair (X,Y ) of objects, a set hom(X,Y ) of mor­
phisms f .

iii. A function, called composition of morphisms,

hom(X,Y )× hom(Y, Z)−→hom(X,Z),

which is defined for every triple (X,Y, Z) of objects.

Cauchy development If A is an achronal subset of M , the future Cauchy de­
velopment of A is the set D+(A) of all points p of M such that every
past­inextendible causal curve through p meets A.
With the past Cauchy developmentD−(A) defined dually,D(A) = D−(A)∪
D+(A) is the Cauchy development of A.
facta. 1. A ⊂ D(A).
2. An achronal set A in a semi­Riemannian manifold M is a Cauchy
hypersurface if and only if D(A) = M .

Cauchy horizon If A is an achronal set, its future Cauchy horizon H+(A) is

D+(A)− I−(D+(A)) =
{
p ∈ D+(A) : I+(p) does not meet D+(A)

}
.

With the past Cauchy horizon H−(A) defined dually, the Cauchy horizon of
A is H(A) = H−(A) ∪H+(A).
facta. 1. If H+(A) is nonempty, the entire future of A cannot be predicted
from A.
2. H+(A) separates D+(A) from the rest of J+(A).
3. For a topological hypersurface A, A is a Cauchy hypersurface if and
only if H(A) is empty.
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deleted

A

J  (A)+

D  (A)+

H  (A)+

Cauchy hypersurface A Cauchy hypersurface in M is a subset S that is met
exactly once by every inextendible timelike curve in M .
facta. 1. S is closed achronal topological hypersurface and is met by every
inextendible causal curve .
2. Any two Cauchy hypersurfaces in M are homeomorphic .
3. The strong causality condition holds on any simply connected Lorentz
surface.

Cauchy­Riemann operator The Cauchy­Riemann operator is

∂

∂x
+ i

∂

∂y
.

facta. Cauchy­Riemann operator is elliptic.

causal boundary The causal boundary of a spacetime (M,g) will be denoted by
bdcM . It is formed by indecomposable past [future] sets which do not
correspond to the past [future] of any point of M .
facta. It is invariant under conformal changes.

causal cone For a timelike vector v the setC(v) of all causal vectorsw such that
〈v, w〉 < 0 is the causal cone containing v.

v

future

past

  causal
cone of v

causal curve In a Lorentz manifold a causal curve is one whose velocity vectors
are all nonspacelike.
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causal cut locus refer to future causal cut locus

causal future refer to chronological future

causal past refer to chronological future

causal geodesically complete A semi­Riemannian manifold M is said to be
causal geodesically complete if all causal inextendible geodesics are com­
plete. Sometimes a causal geodesically completeness is called a nonspace­
like geodesically completeness.

causal geodesically incomplete A semi­Riemannian manifold M is said to be
causal geodesically incomplete if some causal geodesic is incomplete. Some­
times a causal geodesically incompleteness is called a nonspacelike geodesi­
cally incompleteness.

causality condition The manifold M satisfies the causality condition provided
there are no closed causal curves in M .

causality relation The causality relations on M are defined as follows. If p, q ∈
M , then

i. p≪ q means there is a future pointing timelike curve in M from p to
q.

ii. p < q means there is a future pointing causal curve in M from p to q.

facta. As usual, p ≤ q means that either p < q or p = q.

causally convex An open set U in a spacetime is called causally convex if no
causal curve intersects U in a disconnected set.

causally disconnected A spacetime (M,g) is called causally disconnected by a
compact set K if there are two infinite sequences {pn} and {qn}, both
diverging to infinity, such that pn ≤ qn, pn 6= qn and all future pointing
causal curves from pn to qn meet K for each n.
A spacetime (M,g) admitting such a compact K causally disconnecting
two divergent sequences is called causally disconnected.

causally simple A distinguishing spacetime (M,g) is causally simple if J+(p)
and J−(p) are closed subsets of M for all p ∈M .

causal vector In a Lorentz vector space a vector that is nonspacelike is called
causal.

centered coordinate system Let ϕ be a coordinate system of an open set U . If
m ∈ U and ϕ(m) = 0, then the coordinate system is said to be centered at
m.
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chain A p­chain C in M with K­coefficients is a finite linear combination c =∑
i aiσi of p­simplices σi in M for ai ∈ K .

chainable matched covering A matched covering (U⋆,∼) of a manifold M is
chainable over a curve σ : [0, 1]−→M provided that given any a ∈ A such
that σ(0) ∈ Ua, there exist numbers 0 = t0 < t1 < · · · > tk = 1 and indices
a = a1 ∼ a2 ∼ · · · ∼ ak such that

σ([ti−1, ti]) ⊂ Uai for 1 ≤ i ≤ k.

chain complex A chain complex {C, ∂} is a sequence

· · ·−→Cp+1
∂p+1−→Cp

∂p−→Cp−1−→· · ·
of abelian groups Ci and homomorphisms ∂i, indexed with the integers,
such that ∂p ◦ ∂p+1 = 0 for all p. The p­th homology group of C is defined by

Hp(C) = ker∂p/im∂p+1.

The map ∂p is called p­th boundary operator. Elements of ker∂p are called
the differentiable p­cycles and elements of im∂p+1 are called differentiable
p­boundaries.

chain equivalence A chain map φ : C−→C′ is called a chain equivalence if there
is a chain map φ′ : C′−→C such that φ′ ◦ φ and φ ◦ φ′ are chain homotopic
to the identity maps of C and C′, respectively. The map φ′ is called a chain
homotopy inverse of φ.

chain homotopy If φ, ψ : C−→C′ are chain maps, then a chain homotopy of φ to
ψ is a family of homomorphisms

Dp : Cp−→C′
p+1

such that
∂′p+1Dp +Dp+1∂p = ψp − φp

for all p.

chain homotopy inverse refer to chain equivalence

chain map Let S = {Cp, ∂p} and C′ = {C′
p, ∂

′} be chain complexes. A chain
map φ : C−→C′ is a family of homomorphisms φp : Cp−→C′

p such that

∂′p ◦ φp = φp−1 ◦ ∂p for all p.

chain­rule If φ : M−→N and ψ : N−→P are smooth mappings, then for each
p ∈M ,

d(ψ ◦ φ)p = dψφ(p) ◦ dφp.

This expression is called the chain­rule.
facta. The classical chain­rule formula is expressed by the Jacobian matrix
for a composite mapping.
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characteristic bundle Let ω be an exterior two­form on M . Then

Rω =
{
v ∈ TM : v♭ = 0

}

is called the characteristic bundle of ω. Here v♭ is the one­form defined by
v♭(ω) = ω(v, w). A characteristic vector field is a vector field X such that
iXω = 0; that is, X(ω) ∈ Rω for all points in M .

characteristic vf refer to characteristic bundle

chart refer to coordinate system

Christoffel symbol Let x1, . . . , xn be a coordinate system on a neighborhood
U in a semi­Riemannian manifold M . The Christoffel symbols for this
coordinate system are the real­valued functions Γkij on U such that

D∂i(∂j) =
∑

k

Γkij∂k (1 ≤ i, j ≤ n).

chronological future For a subset A of M , the subset

I+(A) = {q ∈M : there is a p ∈ A with p≪ q}
is called the chronological future of A, and

J+(A) = {q ∈M : there is a p ∈ A with p ≤ q}
is called the causal future of A. Dually, chronological past I−(A) of A and
causal past J−(A) of A would be defined.

chronological past refer to chronological future

chronology condition If M contains no closed timelike curves , we say that
the chronology condition holds on M .

class Ck Let U be an open set in Rn and let f : U−→R. We say that f is
differentiable of class Ck on U for a nonnegative integer k, if the partial
derivatives ∂αf/∂rα exist and are continuous on U for [α] ≤ k, where
[α] =

∑
i αi and α is a n­tuple of nonnegative integers. In particular, f is

C0 if f is continuous. For f : U−→Rm, f is differentiable of class Ck if
each of the component functions fi = ui ◦ f is Ck, where ui is a natural
coordinate function of Rm. We also say that f isC∞ if it isCk for all k ≥ 0.

Clifton­Pohl torus Let M be R2 − 0 with ds2 = 2dudv/(u2 + v2). The scalar
multiplication by any c 6= 0 is an isometry of M . Take ν(u, v) = (2u, 2v).
The group Γ = {µn} generated by µ is properly discontinuous; thus
T = M/Γ is a Lorentz surface. Topologically T is the closed annulus
1 ≤ r ≤ 2 with boundary points identified underµ. Thus T is a torus. T
is called the Clifton­Pohl torus.
facta. T is compact but not complete.
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clean intersection Let L and M be submanifolds of P . L and M have clean
intersection if L ∩M is a submanifold and TL ∩ TM = T (L ∩M).

closed form Let A be open in M . A k­form ω on A with k ≥ 0 is said to be
closed if dω = 0.
cf. exact form

closed set refer to topological space

closed star of a simplex refer to star of a simplex

closed star of a vertex refer to star of a vertex

closed subgroup A closed subgroup H of a Lie group G is an abstract subgroup
that is a closed subset of G.

closure of a set Let S be a topological space and A ⊂ S. Then the closure of A,
denoted A, is the intersection of all closed sets containing A.
cf. interior of a set
facta. If A is closed, A = A.

coboundary operator refer to cochain complex

cochain complex Let C = {Cp, ∂} be a chain complex and let G be an abelian
group. The p­dimensional cochain group of C with coefficients in G is

Cp(C;G) = Hom (Cp, G).

The coboundary operator δ is the dual of the boundary operator of chain
complex. The family of groups and homomorphisms {Cp(C;G), δ} is
called the cochain complex of C with coefficients in G.
As usual, the kernel of the homomorphism

δ : Cp(C;G)−→Cp+1(C;G)

is denoted by Zp(C;G) and its image is denoted by Bp+1(C;G). The
cohomology group of C in dimension p with coefficients in G is defined by

Hp(C;G) = Zp(C;G)/Bp(C;G).

If {C, ǫ} is an augmented chain complex, then one has a corresponding
chain complex

· · ·←−C′(C;G)
δ1←−C0(C;G)

ǫ̃←−Hom (Z, G),

where ǫ̃ is one­to­one. We define the reduced cohomology groups of C by

setting H̃q(C;G) = Hq(C;G) if q > 0 and

H̃0(C;G) = kerδ1/imǫ̃.
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In general, we have the equation

H0(C;G) ≃ H̃0(C;G)⊕G.

cf. chain complex

cochain group refer to cochain complex

cochain map Let C = {Cp, ∂} and C′ = {C′
p, ∂

′} be chain complexes. If φ :
C−→C′ is a chain map, then ∂′ ◦φ = φ ◦ ∂. Then the dual homomorphism

Cp(C;G)
φ̃←−Cp(C′;G)

commutes with δ. Such a homomorphism is called a cochain map.
cf. chain map

Codazzi equation Let M be a semi­Riemannian submanifold of M . For
V,W,X ∈ X (M), the following equation, called Codazzi equation , holds.

nor RVWX = −(▽V II)(W,X) + (▽W II)(V,X),

where (▽V II)(X,Y ) = D⊥
V (II(X,Y ))− II(DVX,Y )− II(X,DV Y ).

rel. normal connection

codifferential operator Using the Hodge star operator ⋆, let (α, β) =
∫
M α∧⋆β

which gives an L2 inner product on the sections of exterior algebra of
degree k, Λk(M). The codifferential operatorδ is defined by

δ = (−1)n(k+1)+1 ⋆ d ⋆ .

facta. δ is adjoint of d; that is, (δω1, ω2) = (ω1,dω2).
cf. differential

coframe field LetM be a Riemannian manifold of dimension n and U a neigh­
borhood of m ∈ M . Let e1, . . . , en be a local orthogonal frame field on U
and let ω1, . . . , ωn be the dual one­forms; that is,

ωi(ej) = δij on U.

Then ω1, . . . , ωn form a local orthogonal coframe field on U .

cohomology group refer to cochain complex

cohomology theory Given an admissible classA of pairs of spaces (X,A) and
an abelian group G, a cohomology theory onA with coefficients in G consists
of the following:

i. A function defined for each integer p and each pair (X,A) inAwhose
value is an abelian group Hp(X,A;G).
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ii. A function that for each integer p, assigns to each continuous map
h : (X,A)−→(Y,B), a homomorphism

Hp(X,A;G)
h⋆

←−Hp(Y,B;G).

iii. A function that for each integer p, assigns to each pair (X,A) inA, a
homomorphism

Hp(X,A;G)
δ⋆

←−Hp−1(A;G).

The following axioms are to be satisfied:

Axiom 1 If i is the identity map, then i⋆ is the identity.

Axiom 2 (k ◦ h)⋆ = h⋆ ◦ k⋆.

Axiom 3 δ⋆ is a natural transformation of functors.

Axiom 4 The following sequence is exact, where i and j are inclusions:

· · ·←−Hp(A;G)
i⋆←−Hp(X ;G)

j⋆

←−Hp(X,A;G)
δ⋆

←−Hp+1(A;G)←− · · ·

Axiom 5 If h and k are homotopic, then h⋆ = k⋆.

Axiom 6 Given (X,A), let U be an open set in X such that U ⊂ int A. If
(X−U,A−U) is admissible, then inclusion j induces a cohomology
isomorphism

Hp(X − U,A− U ;G)
j⋆

←−Hp(X,A;G).

Axiom 7 If P is an one­point space, then Hp(P ;G) = 0 for p 6= 0 and

H0(P ;G) ≃ G.

co­index Let M be a semi­Riemannian submanifold of M . The index of TpM
⊥

is called the co­index of M in M .

cokernel of a function refer to kernel of a function

coline refer to future coray

collision A collision in a Minkowski spacetime M is a collection of r incoming
material or lightlike particles:

αi : [ai, 0]−→M (1 ≤ i ≤ r)

and s outgoing particles:

βj : [0, bj]−→M (1 ≤ j ≤ s)

such that αi(0) = βj(0) = p ∈ M for all i, j. Then p is called the collision
event.
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collision event refer to collision

commutative diagram A diagram of maps such as

A
ւ f

yh
B

g−→ C

is called commutative if g ◦ f = h.

compact set refer to compact space

compact space Let S be a topological space. Then S is called compact if for
every covering of S by open sets Uα (that is, ∪Uα = S), there is a finite
subcovering. A subset A ⊂ S is called cpt if A is compact in the relative
topology.

compact support The mapping f ∈ F(M) has compact support if suppf is com­
pact in M .

complement of a set refer to topological space

complete atlas An atlas C on topological space S is complete if C contains each
coordinate system in S that overlaps smoothly with every coordinate
system in C.
facta. Any atlas A on a Housdorff space makes it a manifold since we
agree always to use the unique complete atlas containing A.

completely integrable distribution refer to involutive distribution

complete solution of vector field Let X be a vector field on a n­manifold M .
A complete solution of X is a triple (V, b,Ψ) where V ⊂ M is an open set,
b ∈ R, b > 0 or b = +∞, Ib = (−b, b) and

Ψ : V × Ib−→Rn

such that if Ψ(u0, 0) = c ∈ Rn, then

{u ∈ V : Ψ(u, t) = c}

is an integral curve of X at u0. The components functions of a complete
solution

Ψ(u, t) =
(
ψ1(u, t), . . . , ψn(u, t)

)

are known as a complete system of integrals of X in the domain V .

complete system of integrals of X refer to complete solution of vector field

complete vector field A vector field V is complete provided its maximal inte­
gral curves are all defined on the whole real line.
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complex projective space Let’s introduce an equivalence relation in the com­

plex n­sphere S2n+1 ⊂ Cn+1 by defining

(z1, . . . , zn+1, 0, . . .) ∼ (λz1, . . . , λzn+1, 0, . . .)

for each complex number λ with |λ| = 1. The resulting quotient space is
called complex projective n­space and is denoted by CPn.
facta. CPn is Hausdorff.

component of a space refer to connected space

Con(M) Let Con(M) denote the quotient space formed by identifying all point­
wise globally conformal metrics.

cone of a complex Let K be a complex in a generalized Euclidean space EI

and w a point of EI such that each ray emanating from w intersects |K|
in at most one point. The cone on K with vertex w is the collection of all
simplices of the form wa0 · · · ap, where a0 · · · ap is a simplex of K along
with all faces of such simplices. This collection is denoted by w ∗K . Such
K is often called the base of the cone.

configuration space of a system refer to mechanical system with symmetry

conformally stable A property on Lor(M) is called conformally stable if it holds
for an open set of equivalence classes in the quotient (or interval) topology
on Con(M).

conformal mapping A smooth mapping ϕ : M−→N of semi­Riemannian
mappings is conformal provided

ϕ⋆(gN ) = hgM ,

for some function h ∈ F(M) such that h > 0 or h < 0.
facta. If h is constant, ϕ is a homothety.

congruence refer to pair isometry

conjugate points Points σ(a) and σ(b), a 6= b, on a geodesic σ are conjugate
along σ provided there is a nonzero Jacobi field J on σ such that J(a) = 0
and J(b) = 0.

connected set refer to connected space

connected space A topological spaceS is connected if φ and S are the only sub­
sets of S that are both open and closed. A subset of S is connected if it is
connected in the relative topology. A componentA of S is a nonempty con­
nected subset of S such that the only connected subset of S containing A
isA. S is called locally connected if each point p has an open neighborhood
containing a connected neighborhood of p.
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connected sum If M and N are connected n­manifolds, their connected sum
M#N is obtained by removing an open n­ball from each ofM andN , and
pasting the remnants together along their boundaries.

connection A connectionD on a smooth manifoldM is a functionD fromX (M)×
X (M) to X (M) such that

i. DVW is F(M)­linear in V ,

ii. DVW is R­linear in W ,

iii. DV (fW ) = (V f)W + fDVW for f ∈ F(M).

facta. DVW is called the covariant derivative of W with respect to V for
the connection D.

constant curvature manifold A semi­Riemannian manifold M has constant
curvature if the sectional curvature function is constant .

contact manifold A contact manifold is a pair (M,ω) consisting of an odd­
dimensional manifold M and a closed two­form ω of maximal rank on
M . An exact contact manifold (M, θ) consists of a (2n + 1)­dimensional
manifold M and an one­form θ on M such that θ ∧ (dθ)n is a volume on
M .

continuous curve in a semi­Riemannian manifold A future pointing causal
curve γ : (a, b)−→M is said to be continuous if for each t ∈ (a, b), there
is an ǫ > 0 and a convex normal neighborhood U(γ(t)) of γ(t) with
γ(t−ǫ, t+ǫ) ⊂ U(γ(t)) such that given any t1, t2 with t−ǫ < t1 < t2 < t+ǫ,
there is a smooth future pointing causal curve in U(γ(t)) from γ(t1) to
γ(t2).

contractible loop refer to loop

contractible space Topological space X is called contractible if X has the ho­
motopy type of a single point.
rel. homotopy equivalence

contraction Note that there is a unique F(M)­linear function

C : T 1
1 (M)−→F(M),

called (1,1) contraction, such that C(X ⊗ θ) = θX for all X ∈ X (M) and
θ ∈ X ⋆(M).
For A ∈ T rs (M), the function

(θ,X)−→A(θ1, . . . , θ, . . . , θr−1, X1, . . . , X, . . . , Xs−1)

is a (1,1) tensor that can be written

A(θ1, . . . , , . . . , θr−1, X1, . . . , , . . . , Xs−1).

20



Applying the (1,1) contraction to this tensor produces a real­valued func­
tion denoted by

(CijA)(θ1, . . . , θr−1, X1, . . . , Xs−1),

for 1 ≤ i ≤ r and 1 ≤ j ≤ s. Then CijA isF(M)­multilinear and is a tensor
of type (r­1, s­1) called the contraction of A over i, j.

contravariant functor A contravariant functor G from a categry C to a category D
is a rule that assigns to each object X of C, an object G(X) of D, and to
each morphism f : X−→Y of C, a morphism G(f) : G(X)−→G(Y ) of D
such that

G(idX) = idG(X) for all X,

G(g ◦ f) = G(f) ◦G(g).

A natural transformation between contravariant functors would be deined
obviously.
cf. covariant functor

convergence LetQ be a semi­Riemannian manifold ofM with mean curvature
vector field H . The convergence of Q is the real­valued function k on the
normal bundle NQ such that

k(z) = 〈z,Hp〉 =
traceSz
dimN

for z ∈ TpQ⊥. For spacelike hypersurface in Mn,

Hp =
1

n− 1

n−1∑

i=1

II(ei, ei),

where e1, . . . , en−1 is any orthonormal basis for TpQ.
rel. focal point

convex covering A convex covering K of a semi­Riemannian manifold M is a cov­
ering of M by convex open sets such that if elements U ,V of Kmeet then
U ∩ V is convex.
facta. For any open covering O of a manifold, there is a convex covering
K such that each element of K is contained in some element of O.

convex semi­Riemannian manifold An open setC in a semi­Riemannian man­
ifold is convex provided C is a normal neighborhood of each of its points
.

convex set A subset of Rn is called convex if for each pair x, y of points in A,
the line segment joining them lies in A.
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M
U

ξ

Rn

Ri

x i

u i

coordinate expression A coordinate expression for f in terms of ξ is f ◦ ξ−1 :
ξ(U)−→ R. In fact,

f = (f ◦ ξ−1)(x1, . . . , xn) on U.

coordinate function refer to coordinate system

coordinate slice If ξ : U −→ Rn is a coordinate system in a manifold M then
holding any n −m of the coordinate functions constant produces an m­
dimensional submanifold called a ξ­coordinate slice Σ of U .

coordinate system (chart) A coordinate system (chart) in a topological space S is
a homeomorphism ξ of an open set U of S onto an open set ξ(U) of Rn. If
we write

ξ(p) = (x1(p), . . . , xn(p)) for each p ∈ U,
the resulting functions x1, . . . , xn are called coordinate functions of ξ. Thus

ξ = (x1, . . . , xn) : U −→ Rn

and ui ◦ ξ = xi where ui is a natural coordinate function of Rn.

coray refer to future coray

coset manifold If H is a closed subgroup of G, there is a unique way to make
G/H a manifold so that the projection π : G−→G/H is a submersion.
Such G/H is called a coset manifold.

cospacelike geodesic A geodesic σ in a manifoldM is cospacelike provided the
subspace σ′(s)⊥ of Tσ(s)M is spacelike for one (hence every) s.

cotangent bundle For manifold M , let cotangent bundle T ⋆M of M be the set⋃{T ⋆pM : p ∈M} of all cotangent spaces to M .
cf. tangent bundle
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cotangent space The cotangent space of M at p is the set of all line maps of
TpM into R and denoted by T ⋆pM .

covariant derivative Let V be a vector field on a semi­Riemannian manifold
M . The (Levi­Civita) covariant derivativeDV is the unique tensor derivation
on M such that

DV f = V f for f ∈ F(M)

and DVW is the Levi­Civita covariant derivative for all W ∈ X (M).

covariant differential The covariant differential of an (r,s) tensor A on M is the
(r,s+1) tensor DA such that

(DA)(θ1, . . . , θr, X1, . . . , Xs, V ) = (DVA)(θ1, . . . , θr, X1, . . . , Xs)

for all V,Xi ∈ X (M) and θj ∈ X ⋆(M).

covariant functor A covariant functor G from a categry C to a category D is a
function assigning to each objectX of C, an objectG(X) of D, and to each
morphism f : X−→Y of C, a morphism G(f) : G(X)−→G(Y ) of D. The
following two conditions must be satisfied:

G(1X) = 1G(X) for all X,

G(g ◦ f) = G(g) ◦G(f).

That is, a covariant functor must preserve composition and identities. It
is imediate that if f is an equivalence inC, then G(f) is an equivalence in
D.
Simply, it is often called a functor.
cf. contravariant functor

cover refer to paracompact space

covering manifold refer to covering map

covering map A smooth map k : M̃−→M onto M is a covering map provided
each point p ∈ M has a connected neighborhood U that is evenly covered
by k; that is, k maps each component of k−1(U) diffeomorphically onto
U . And the number of points in k−1(p) is called the multiplicity of the

covering and M̃ is called a covering manifold .

critical energy density In Robertson­Walker spacetime , the critical energy den­
sity is expressed by ρc = 3(H0)

2/8π, where Hubble number H0 = f ′
0/f0.

critical manifold LetN ⊂M be a submanifold and each point inN is a critical
point of f . N is called a nondegenerate critical submanifold if for each p ∈ N ,

{
v ∈ TpM : Hf (v, w)|p = 0 for all w ∈ TpM

}
= TpN.
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facta. It is introduced by Bott in Nondegenerate critical manifold, Ann. Math.
60(2) 248 – 261.

critical point A point p ∈ M is a critical point of f ∈ F(M) provided v(f) = 0
for all v ∈ TpM . It is often called a singular ponit or an equilibrium point.

cubic coordinate system A coordinate system ϕ of an open set U is called a
cubic coordinate system if ϕ(U) is an open cube about the origin in Rn.

curl The curl of V ∈ X (M) is defined

(curl V )(X,Y ) = 〈DXV, Y 〉 − 〈DY V,X〉.

facta. 1. The curl V is a skew­symmetric (0,2) tensor field with coordinate

components
∂Vj

∂xi − ∂Vi

∂xj .
2. curl (grad f) = 0.
3. curl V = dθ, where θ is the one­form metrically equivalent to V .

curvaturelike function A multilinear function F : TpM
4−→ R is curvaturelike

provided for the function (v, w, x, y)−→〈Rvwx, y〉, F has the following
symmetries :

i. Rxy = −Ryx
ii. 〈Rxyv, w〉 = −〈Rxyw, v〉

iii. Rxyz +Ryzx+Rzxy = 0

iv. 〈Rxyv, w〉 = 〈Rvwx, y〉

curve A curve in a manifold M is a smooth mapping α : I−→M where I is an
open interval in the real line R.

cycle in homology refer to chain complex
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D
Dajczer and Nomizu’s criteria Let V have indefinite scalar product g, and let

b be a symmetric bilinear form on V with corresponding quadratic form
q. The followings are equivalent:

i. b = Cg for some C ∈ R.

ii. q = 0 on numm vectors .

iii. |q| is bounded on timelike unit vectors .

iv. |q| is bounded on spacelike unit vectors .

deck transformation A deck transformation of a covering k : M̃−→M is a diffeo­

morphism φ : M̃−→M̃ such that k ◦ φ = k.

M

M
~ φ

k k

M
~

facta. 1. The set of all deck transformations of a covering forms a group
with composition of functions as the group operation.
2. A deck transformation of a connected covering is determined by its
value at a single point .
3. The more symmetrical a covering is, the larger its deck transformation
group .

definite form A symmetric bilinear form b on V is

i. positive [ negative ] definite if v 6= 0 implies b(v, v) > 0 [ < 0],

ii. positive [ negative ] semidefinite if for all v ∈ V , b(v, v) ≥ 0 [ ≤ 0],

iii. nondegenerate if b(v, w) = 0 for all w ∈ V implies v = 0.

deformation retract refer to deformation retraction

deformation retraction A deformation retraction ofX ontoA is a continuous map
F : X × I−→X such that

F (x, 0) = x for x ∈ X,
F (x, 1) ∈ A for x ∈ X,
F (a, t) = a for a ∈ A.

If such an F exists, then A is called a deformation retract of X .
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degree of antipodal map refer to antipodal map

dense subset Let S be a topological space. A subset A of S is called dense in S
if A = S. And A is called nowhere dense if C(A) is dense in S.

derivation The derivation on F(M) is a function D : F(M)−→F(M) that is

i. R­linear : D(af + bg) = aD(f) + bD(g), for a, b ∈ R.

ii. Leibnizian : D(fg) = gD(f) + fD(g), for f, g ∈ F(M).

derivation in exterior algebra refer to exterior algebra endomorphisms

de Sitter spacetime The four­dimensional Lorentz sphere S4
1(r) is called de

Sitter spacetime .
cf. universal anti­de Sitter spacetime

diagonal map The diagonal map d : X−→X×X ofX is defined by d(x) = (x, x).

diagonal set refer to Housdorff space

diameter For any metric space M , the diameter of M is defined by

diam(M) = sup {d(p, q) : p, q ∈M} ,

where d is the Riemannian metric.

diffeomorphism A map φ : M−→N is a diffeomorphism if φ is smooth and has
an smooth inverse map.

differential The differential of f ∈ F(M) is the one­form df such that (df)(v) =
v(f) for every tangent vector v to M .
facta. The differential has the following properties:

i. d : F(M)−→X ⋆(M) is R­linear,

ii. d(fg) = gd(f) + fd(g), for f, g ∈ F(M),

iii. d(h(f)) = h′(f)df , for f ∈ F(M), h ∈ F(R).

differential ideal Let E⋆(M) be the set of all differential forms. An ideal
I ⊂ E⋆(M) is called a differential ideal if it is closed under exterior differ­
entiation d; that is,

d(I) ⊂ I.

differential map Let φ : M−→N be a smooth mapping. For each p ∈M ,

dφp : TpM−→Tφ(p)N

sending v to vφ is called the differential map of φ at p.
facta. 1. dφp(v)(g) = v(g ◦ φ), for all v ∈ TpM and g ∈ F(M).
2. differential maps are linear.
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p v

M Nφ

dφ

(p)φ

dφ(v)

φ(p)
T N

T Mp

differential p­form A differential p­form is a skew­symmetric covariant tensor
field of type (0, p). Let U ⊂M be open. The set of differential p­forms on
U forms a real vector space and is denoted by Ep(U).

Dimension axiom refer to homology theory

discrete topology Let S be a topological space. A point u ∈ S is called isolated
if {u} is open in S. The unique topology in which every point is isolated
is called the discrete topology;O = 2S , the collection of all subsets.

distance preserving refer to homothety

distinguishing spacetime A spacetime is said to be distinguishing if for all
points p, q ∈M , either I+(p) = I+(q) or I−(p) = I−(q) implies p = q.
facta. In a distinguishing spacetime , distinct points have distinct chrono­
logical futures and chronological pasts. Thus points are distinguished
both by their chronological futures and pasts.

distribution Let c be an integer with 1 ≤ c ≤ d. A c­dimensional distribution D
on a d­dimensional manifold M is a choice of a c­dimensional subspace
D(m) of TmM for each m in M . D is smooth if for each m in M , there is
a neighborhood U of m and there are c smooth vector fields X1, . . . , Xc

which span D at each point of U . A vector field X on M is said to belong
to (or lying in) the distribution D if TmX ∈ D(m) for each m ∈M .

divergence Let M be an orientable manifold with volume element ω and X
a vector field on M . Then the unique function divX ∈ F(M) such that
LXω = (divX)ω is called the divergence of X .

divergence theorem LetV be a smooth vector field on an oriented Riemannian
manifold M and let D be a regular domain in M . If ~n is the unit normal
vector field on ∂D, then

∫

D

divV =

∫

∂D

〈V, ~n〉.

dual homomorphism A homomorphism f : A−→B give rise to a dual homo­

morphism f̃ such that

Hom (A,G)
f̃←−Hom (B,G)
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giving in the reverse direction. The map f̃ assigns the homomorphism
φ : B−→G to the composite map

A
f−→B φ−→C.

That is, f̃(φ) = φ ◦ f .

dual normal symmetric space Normal symmetric spacesM = G/H andM⋆ =
G⋆/H⋆ are dual provided there exist

i. a Lie algebra isomorphism δ̃ : h−→h⋆ such that B⋆(δ̃V, δ̃W ) =
−B(V,W ) for all V,W ∈ h;

ii. a linear isometry δ : m−→m⋆ such that [δX, δY ] = −δ̃[X,Y ] for all
X,Y ∈ m.

dust A dust is a perfect fluid with pressure p = 0 and energy density ρ > 0.
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E
edge The edge of an achronal set A consists of all points p ∈ A such that every

neighborhood U of p contains a timelike curve from I−(p, U) to I+(p,A)
that does not meet A.

A

edge(A)

2
1In R

Eilenberg­Steenrod axioms refer to homology theory

Eilenberg­Zilber theorem For any pair X , Y of topological spaces, there are
chain maps between singular chain complexes

S(X)⊗ S(Y ) ⇀↽ S(X × Y )

that are chain­homotopy inverse to each other; they are natural with
respect to chain maps induced by continuous maps.

Einstein­de Sitter cosmological model The Einstein­de Sitter cosmological model
is

M(0, t
2
3 ) = R+ ×t2/3 R3.

facta. The Hubble function H = f ′/f = 2
3t .

Einstein field equation If M is a spacetime containing matter with stress­
energy tensor T , then

G = 8πT,

where G is the Einstein gravitational tensor .
facta. The universal constant k = 8π is determined from comparison with
Newtonian physics at low speeds and weak gravitation.

Einstein gravitational tensor The Einstein gravitational tensor of a spacetime M
is G = Ric− 1

2Sg .
facta. 1. G is a symmetric (0,2) tensor field with divergence zero.
2. Ric = G− 1

2C(G)g.
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Einstein manifold A semi­Riemannian manifold M is an Einstein manifold
provided Ric = cg for some constant c.
facta. If M is connected, dimM ≥ 3 and Ric = fg, then M is Einstein.

elliptic operator Let L be a partial differential operator of order l and D the
derivative operator. Let

L = Pl(D) + · · ·+ P0(D),

where Pj(D) is an m × m matrix each entry of which is a differential
operator

∑
[α]=j aαD

α, homogeneous of order j and where the aα are

smooth complex valued functions on Rn. Let Pj(ξ) denote the matrix
obtained by substituting ξα for Dα in Pj(D) where ξ = (ξ1, . . . , ξn) is a
point in Rn. L is said to be elliptic at the point x ∈ Rn if the matrix Pl(ξ) is
nonsingular at x for each nonzero ξ. L is elliptic if it is elliptic at each x.
facta. L is elliptic at x if and only if

L(ϕlu)(x) 6= 0,

for each Cm­valued smooth functionu such thatu(x) 6= 0 and each smooth
real­valued function ϕ such that ϕ(x) = 0 but dϕ(x) 6= 0, since for each
such ϕ and u,

L(ϕlu)(x) = Pl(D)(ϕlu)(x) = Pl(dϕ|x)(u(x)).

embedding refer to imbedding

energy For a curve segment α : [0, b]−→M in a semi­Riemannian manifold, the
integral

E(α) =
1

2

∫ b

0

〈α′, α′〉du

is called energy (or action) of a curve α. For a piecewise smooth variation
x of α, letEx(v) be the value ofE on the longitudinal curve v→x(u, v). So

Ex(v) =
1

2

∫ b

0

〈xu, xu〉du.

energy equation If (U, ρ, p) is a perfect fluid,

Uρ = −(ρ+ p)divU

is the energy equation .
rel. stress­energy tensor

energy equation in Schwarzschild spacetime LetN be the Schwarzschild ex­
terior and B black hole. If γ is a lightlike particle in N ∪ B, then relative
to equatorial coordinates ,
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i. hdt/ds = E

ii. r2dϕ/ds = L

iii. ϑ = π/2

and γ satisfies the energy equation

E2 =

(
dr

ds

)2

+

(
L2

r2

)
h(r).

facta. On N we interpret the constant E and L as the energy at infinity
and angular momentum of γ.

energy in Minkowski spacetime Let α be a material particle of mass m in
Minkowski spacetime M . If ω is freely falling observer, then the energy of
α relative to ω is the time component

E =
m√

1− v2

of P = mdα/dτ , and the momentum of α relative to ω is the Euclidean
vector field

P =
m√

1− v2

dα̃

dt

on α̃. The scalar momentum of α relative to ω is the function ℘ = |P̃ |.
energy­momentum vector field Let M be a Minkowski spacetime. If α :

I−→M is a material particle of mass m, its energy­momentum vector field
is the vector field P = mdα/dτ on α.

ε­disk refer to metric

equilibrium point refer to critical point

equivalence class refer to equivalence relation

equivalence relation Let S be a set. An equivalence relation ∼ on S is a binary
relation such that for all u, v, w ∈ S,

i. u ∼ u (reflexive law);

ii. u ∼ v iff v ∼ u (symmetric law);

iii. u ∼ v and v ∼ w implies u ∼ w (transitive law).

The equivalence class containing u, denoted [u], is defined by

[u] = {v ∈ S : u ∼ v}.

The set of equivalence class is denoted S/ ∼ and the mapping π :
S−→S/ ∼with u 7→ [u] is called the canonical projection.
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Euclidean coordinate system An Euclidean coordinate system for E is an isom­
etry ζ : E−→R3.

ergodic flow Let S be a measure space and ψt a flow on S. If for all t, the only
invariant measurable sets under ψt are ∅ and all of S, then ψt is called
ergodic.

Euclidean half­space Euclidean half­space Hn is defined by

Hn = { (x1, . . . , xn)|xn ≥ 0} .

Euclidean metric The Euclidean metric on Rn is defined by

d(x, y) =

(
n∑

i=1

(xi − yi)2

) 1
2

,

where x = (x1, . . . , xn) and y = (y1, . . . , yn). The above metric is often
called the standard metric on Rn.

Euclidean n­space On Rn, the dot product gives rise to a metric tensor with

〈vp, wp〉 = v · w =
∑

i

viwi,

for v, w ∈ Rn. In any geometric context Rn will denote the resulting
Riemannian manifold , called Euclidean n­space.

Euler number The Euler number of a finite complex K is defined by

χ(K) =
∑

p

(−1)prank (Cp(K)).

That is, χ(K) is the alternating sum of the number of simplices of K in
each dimension.
facta. Euler number of K is a topological invariant of |K|.

Euler­Poincaré characteristic Given a triangulation T of a regular region R ⊂
S of a surfaceS, we may denote byF the number of triangles (faces), byE
the number of edges and by V the number of vertices of the triangulation.
The number

F − E + V = χ

is called the Euler­Poincaré characteristic of the triangulation.

evenly covered refer to covering map

event In a Minkowski spacetime M , every point in M is called an event.
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event horizon LetAbe a subset of a connected time­oriented Lorentz manifold.
The event horizon E is the boundary of J+(A); that is, E = bdJ+(A).

exact contact manifold refer to contact manifold

exact form Let A be open in M . A 0­form f on A is said to be exact on A if it is
constant on A; a k­form omega on A with k > 0 is said to be exact on A if
there is a (k − 1)­form θ on A such that ω = dθ.

Exactness axiom refer to homology theory

exact sequence Consider a sequence (finite or infinite) of groups and homo­
morphisms

· · ·−→A1
φ1−→A2

φ2−→A3−→· · ·
This equation is called exact at A2 if

imφ1 = kerφ2.

If it is everywhere exact, it is called an exact sequence. Of course, exactness
is not defined at the first or last group of sequence if such exist.
cf. closed form

Excision axiom refer to homology theory

exponential map If o ∈ M , let Eo be the set of vectors v in ToM such that the
inextendible geodesic γn is defined at least on [0,1]. The exponential map
of M at o is the function

expo : Eo−→M
such that expo(v) = γv(1) for all v ∈ Eo.
facta. The exponential map expo carries lines through the origin of ToM
to geodesics of M through o.

extendible curve A piecewise smooth curve α : [0, B)−→M is extendible pro­
vided that it has a continuous extension α̃ : [0, B]−→M . Then q = α̃(B)
is called an endpoint of α.
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extendible manifold A connected semi­Riemannian manifold M is extendible
provided M is (isometric to) an open submanifold of a connected semi­

Riemannian manifold M̃ 6= M . In general, M is extendible if one of its
connected components is extendible. Otherwise M is inextendible (or
maximal).
rel. extension of a manifold

extension of a manifold An extension of a Lorentz manifoldM is a Lorentz man­

ifold M̃ together with an isometry ψ : M−→M̃ which maps M onto

a proper open subset of M̃ . An analytic extension of M is an extension

ψ : M−→M̃ such that both Lorentz manifolds are analytic and the map ψ
is analytic.
rel. extendible manifold

exterior algebra LetΛk(V )be the vector space of skew­symmetrick­multilinear
maps on a finite dimensional real vector space V . Then the maps in Λk(V )
are called exterior k­forms on V . Forω1 ∈ Λk(V ) andω2 ∈ Λl(V ), the wedge
product ω1 ∧ ω2 ∈ Λk+l(V ) is defined by

ω1 ∧ ω2 =
(k + l)!

k!l!
h(ω1 ⊗ ω2),

for an alternating multilinear map h. The direct sum of the spaces Λk(V )
(k = 0, 1, . . .) together with its structure as a real vector space and multi­
plication induced by the wedge product, is called the exterior algebra of V
or the Grassmann algebra of V and is denoted by Λ(V ).

exterior algebra endomorphisms An endomorphism l of an exterior algebra Λ(V )
of vector space V (or, of any graded algebra) is

i. a derivation if l(u ∧ v) = l(u) ∧ v + u ∧ l(v), for u, v ∈ Λ(V );

ii. an anti­derivation if l(u∧v) = l(u)∧v+(−1)pu∧ l(v), for u ∈ Λp(V )
and v ∈ Λ(V );

iii. of degree k if l : Λj(V )−→Λj+k(V ) for all j with assumption Λi(V ) =
{0} if i < 0.

exterior k­form refer to exterior algebra
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F
face of simplex refer to abstract simplicial complex

fiber refer to 1. vector bundle
2. warped product

fiber deivative let M be a manifold and L ∈ F(TM). Then the map FL :
TM−→T ⋆M with wp 7→ DLp(wp) ∈ L(TpM,R) = T ⋆pM is called the fiber
derivative of L, where Lp denotes the restriction of L to the fiber over
p ∈M .

filtered space refer to filtration

filtration If X is a space, a filtration of X is a sequence X0 ⊂ X1 ⊂ · · · of
subspaces of X whose union is X . A spaceX together with a filtration of
X is called a filtered space. IfX and Y are filtered spaces, a continuous map
f : X−→Y such that for all p, f(Xp) ⊂ Yp is said to be filtration­preserving.

filtration­preserving refer to filtration

fine Cr topologies Let Lor(M) denote the space of all Lorentz metrics on M .
The fineCr topologies on Lor(M) may be defined by using a fixed countable
covering B = {Bi} of M by coordinate neighborhoods with the property
that each compact subset of M intersects only finitely many of the Bi’s.
(Such a coordinate covering is called locally finite.)

finite distance condition The spacetime (M,g) satisfies the finite distance con­
dition if d(p, q) <∞ for all p, q ∈M .

finitely compact spacetime The causal spacetime (M,g) is called finitely com­
pact if for each fixed constant B > 0 and each sequence of points {rn}
with either p ≪ q ≤ rn and d(p, rn) ≤ B for all n, or rn ≤ q ≪ p and
d(rn, p) < B for all n, there is an accumulation point of {rn} in M .
facta. Without the condition xn ≤ q ≪ p (or xn ≤ q ≪ p) for some q ∈M ,
Minkowski spacetime fails to be finitely compact .

finitely generated group refer to free abelian group

first countable space refer to first countable topology

first countable topology Let S be a topological space. The topology is called
first countable if for each u ∈ S, there is a countable collection {Un} of
neighborhoods of u such that for any neighborhood U of u, there is an
integer n with Un ⊂ U . Such a space S is called a first countable space.

first fundamental form refer to second fundamental form
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fixed­endpoint homotopic refer to fixed­endpoint homotopy

fixed­endpoint homotopy Let P (p, q) be the set of all paths from p to q. If
α, β ∈ P (p, q), a fixed­endpoint homotopy from α to β is a continuous map
H : I × I−→M such that for all s, t ∈ I

H(t, 0) = α(t) H(0, s) = p,

H(t, 1) = β(t) H(1, s) = q.

Defining αs(t) = H(t, s) shows that H is an one­param family of path
αs ∈ P (p, q), varying continuously from α0 = α to α1 = β. If such a
homotopy exists, α and β are fixed­endpoint homotopic, denoted by α ≃ β.

fixed­endpoint homotopy class Since fixed­endpoint homotopy is an equiva­
lence relation on P (p, q), the equivalence class containing α ∈ P (p, q) is
denoted by [α] and called the fixed­endpoint homotopy class of α.

flat manifold A semi­Riemannian manifoldM for which the Riemannian cur­
vature tensor R is zero at every point is said to be flat.

flat operator Let M be a manifold and ω ∈ Λ2(M) be nondegenerate. Then the
map ♭ : X (M)−→X ⋆(M) with X 7→ X♭ = iXω (hence X♭ = ω♭(X)) is
called the flat operator. And the map ♯ : X ⋆(M)−→X (M) with α 7→ α♯ =
ω♯(α) is called the sharp operator.
facta. (X♭)♯ = X and (α♯)♭ = α.

flow The flow of a complete vector field V on M is the mapping ψ : M×R−→M is
given by ψ(p, t) = αp(t), where αp is the maximal integral curve starting
at p.
rel. flow box

flow box Let M be a manifold and X a vector field on M . A flow box of X at
m ∈M is a triple (U, a, ψ) where

i. U ⊂M is open with m ∈ U and a ∈ R, a > 0 or a = +∞;

ii. F : U × Ia−→M is a class C∞ where Ia = (−a, a);
iii. for each u ∈ U , γn : Ia−→M defined by γn(λ) = ψ(u, λ) is an

intergral curve of X at u;

iv. if ψλ : U−→M is defined by ψλ(u) = ψ(u, λ), then for λ ∈ Ia, ψλ(U)
is open and ψλ is a diffeomorphism onto its image.

Such a mapping ψ is called the flow of X .
rel. flow
facta. 1. (uniqueness of the flow box) When (U, a, ψ) and (U ′, a′, ψ′) are two
flow boxes at m ∈M , ψ and ψ′ are equal on (U ∩ U ′)× (Ia × Ia′).
2. (Existence of the flow box) Let X be a smooth vector field on a manifold
M . For each m ∈M , there is a flow box of X at m.

36



focal order refer to focal point

focal point Let σ be a geodesic ofM that is normal to P ⊂M , that is σ(0) ∈ P ,
σ′(0) ⊥ P . Then σ(r), r 6= 0, is a focal point of P along σ provided there is a
nonzero P ­Jacobi field J on σ with J(r) = 0. The focal order of σ(r) is the
dimension of the space of P ­Jacobi fields on σ that vanish at r.

force equation If (U, ρ, p) is a perfect fluid, the force equation is

(ρ+ p)DUU = −grad⊥p,

where the spatial pressure gradient grad⊥p is the component of grad p or­
thogonal to U .
rel. stress­energy tensor

frame An orthonormal basis for a tangent space TpM is called a frame on M at
p.

frame field A frame field on a curve α : I−→M is a set of mutually orthogonal
unit vector field E1, . . . , En on α.

frame­homogeneous A semi­Riemannian manifold M is frame­homogeneous
provided any frame on M can be carried to any other by the differential
map of an isometry of M .
facta. Hyperquadrics are frame­homogeneous.

free abelian group An abelian group G is free if it has a basis; that is, if there
is a family {gα}α∈I of elements of G such that each g ∈ G can be written
uniquely as a finite sum

g =
∑

α

nαgα

with an integernα. If each g ∈ G can be written as a finite sum g =
∑
nαgα

but not necessarily uniquely, then we say that the family {gα} generates
G. In particular, if the set {gα} is finite, we say that G is finitely generated.
The number of elements in a basis for G is called the rank of G.
facta. Uniqueness implies that each element gα has infinite order; that is,
gα generates an infinite cyclic subgroup of G.

free falling A particle in a Minkowski space is a geodesic is said to be free
falling. In general, “free falling” means moving under the influence of
gravity alone.

free homotopy A homotopy of closed curves (loops) in which the endpoint is
allowed to move is called a free homotopy.

Friedmann cosmological model A Friedmann cosmological model is a Robertson­
Walker spacetime such that the galactic fluid is dust and H = f ′/f is
positive for some t0.
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Friedmann equation Let M(k, f) be a Robertson­Walker spacetime with f
nonconstant. The Friedman equation is

f ′2 + k = A/f, where A = 8πM/3.

Frobenius theorem Let D be a c­dimensional involutive smooth distribution
on d­manifold M . Let m ∈ M . Then there exists an integral manifold of
coordinate system (U,ϕ) which is centered at m. Indeed, there exists a
cubic coordinate functions x1, . . . , xd such that the slices

xi = constant for all i ∈ {c+ 1, . . . , d}

are integral manifolds of D and if (N,ψ) is a connected integral manifold
of D such that ψ(N) ⊂ U , then ψ(N) lies in one of these slices.

full quantization Let Q be a manifold. A full quantization of Q is a map taking
classical observables f (i.e., continuous functions of (q, p) ∈ T ⋆Rn) to

self­adjoint operators f̂ on Hilbert spaceH such that

i. (f + g)ˆ= f̂ + ĝ;

ii. (λf)ˆ= λf̂ for λ ∈ R;

iii. {f, g}ˆ= 1
i [f̂ , ĝ];

iv. ĉ = id for constant function c;

v. q̂i and p̂j act irreducibly onH.

facta. The condition (v) really means that we can takeH = L2(Rn) and that
q̂i and p̂j are given by q̂i = Qqi and p̂j = 1

i
∂
∂qj

; it is called the Schrödinger
representation.

full subcomplex Let L be a complex. A subcomplex L0 of L is said to be a full
subcomplex of L provided each simplex of L whose vertices belong to L0

belongs to L0 itself.

functor refer to covariant functor

fundamental group If p ∈ M , let π1(M,p) be the set of all fixed­endpoint
homotopy classes in P (p, p). The multiplication [α][β] = [α ∗ β] makes
π1(M,p) a group, called the fundamental group ofM at p, whereα∗β means
the path product of α and β.
facta. Above property is first proposed by Poincaré.

fundamental inequality of elliptic operator Let P denote the complex vector
space consisting of smooth functions defined on Rn which have values in
complexm­space Cm and are periodic of period 2π ineach variable. LetL
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be an elliptic operator on P of order l and let s be an integer. Then there
is a constant c > 0 such that

‖u‖s+l ≤ c
(
‖Lu‖l + ‖u‖s

)

for all u ∈ Hs+l, where ‖u‖k means the Lk norm of u.

Fundamental theorem of finitely generated abelian groups LetGbe a finitely
generated abelian group. Let T be its torsion subgroup.

i. There is a free abelian subgroup H of G having finite rank β such
that G = H ⊕ T .

ii. There are finite cyclic groups T1, . . . , Tk, where Ti has order ti > 1
such that t1|t2| · · · |tk and

T = T1 ⊕ · · · ⊕ Tk.

iii. The number β and t1, . . . , tk are uniquely determined by G.

The number β is called the Betti number og G and the numbers t1, . . . , tk
are called the torsion coefficients of G.
facta. β is the rank of the free abelian group G/T ≃ H .

Fundamental theorem of Riemannian geometry LetM be a semi­Riemannian
manifold. Then there is a unique connection D on M such that

i. DXY −DYX = [X,Y ];

ii. parallel translation preserves the inner product (i.e., is an isometry).

future Busemann function refer to Busemann function

future Cauchy development refer to Cauchy development

future Cauchy horizon refer to Cauchy horizon

future causal cut locus The future causal cut locus C+(p) of p is the union of
future timelike cut locus and future null cut locus; that is,C+(p) = C+

t (p)∪
C+
N (p). The past causal cut locus C−(p) of p is defined dually; that is,

C−(p) = C−
t (p) ∪ C−

N (p).
The causal cut locus C(p) of p is defined by C(p) = C−(p) ∪C+(p).

future­converging A spacelike submanifold ofM is future­converging provided
its mean curvature vector field H is past pointing timelike .

future coray Let p ∈ J(γ) ≡ J+(γ) ∩ J−(γ). A future [past] ray µ± : I±−→M
from [to] p satisfying

i. µ± ⊂ J(γ);
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ii. b±γ (µ±(v)) = b±γ (µ±(u)) + d(µ±(u), µ±(v))
for all u, v ∈ I± such that u ≤ v,

is called a future [past] coray of γ. A line η : I−→M satisfying

i. η ⊂ J(γ);

ii. b+γ (η(v)) = b−γ (η(v)) = b+γ (η(u)) + d(η(u), η(v))
for all u, v ∈ I such that u ≤ v,

is called a coline of γ.

future cut point refer to future timelike cut locus

future­directed refer to future pointing

future imprisoned Let γ : [a, b)−→M be a future pointing causal curve. Then
γ is called future imprisoned in the compact set K if there is some t0 < b
such that γ(t) ∈ K for all t0 < t < b. The curve γ is called partially future
imprisoned in the compact set K if there exists an infinite sequence tn→b
with γ(tn) ∈ K for each n.

future inner ball refer to inner ball

future null cut locus Let C+
N (p) [C−

N (p)] denote the future [past] null cut locus of
p which is consists of all future [past] null cut points of p.

future nullcone refer to nullcone

future null cut point Let γ : [0, a)−→M be a future pointing null geodesic
with endpoint p = γ(0). Let t0 = sup{t ∈ [0, a) : d(p, γ(t)) = 0}. If
0 < t0 < a, we will say γ(t0) is the future null cut point of p on γ.
The past null cut points are defined dually.

future outer ball refer to outer ball

future pointing A tangent vector in a future causal cone is said to be future
pointing (or future­directed). A causal curve is future pointing if all its
velocity vectors are future pointing.

future pre­Busemann function refer to pre­Busemann function

future set A subset F of M is a future set provided I+(F ) ⊂ F . If F is a future
set, its complement M − F is a past set (closed under I−).

future timelike cut locus Let

T−1M = {v ∈ TM : g(v, v) = −1 and v is future pointing } .
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Given p ∈ M , let T−1M |p denote the fiber of T−1M at p. Also given
v ∈ T−1M , let σv denote the unique timelike geodesic with σ′

v(0) = v.
The future timelike cut locus Γ+(p) in TpM is defined to be

Γ+(p) = {s(v)v : v ∈ T−1M |p and 0 < s(v) <∞} .

The future timelike cut locus C+
t (p) of p in M is defined by

C+
t (p) = expp(Γ

+(p)).

If 0 < s(v) < ∞ and σv(s(v)) exists, then the point σv(s(v)) is called the
future cut point of p = σv(0) along σv .
The past timelike cut locus C−

t (p) and past cut point may be defined dually.

future­trapped A closed achronal subset A of M is future­trapped provided
E+(A) ≡ J+(A) − I+(A) is compact.
Dually, past­trapped means E−(A) ≡ J−(A)− I−(A) is compact.

41



G
Gauss­Bonnet theorem LetR ⊂ S be a regular region of an oriented Riemann­

ian surface and let C1, . . . , Cn be the closed, simple, piecewise regular
curves which from the boundary bdR of R. Let χ(R) denote the Euler­
Poincaré characteristic of R, kg(s) the geodesic curvature of the regular
arclength of α and K the Gaussian curvature of S. Suppose that each Ci
is positively oriented and let θ1, . . . , θn be the set of all external angles of
the curves C1, . . . , Cn. Then

n∑

i=1

∫

Ci

kg(s)ds+

∫ ∫

R

Kdσ +

p∑

j=1

θj = 2πχ(R)

where s denotes the arclength of Ci and the integral over Ci means the
sum of integrals in every regular arc of Ci.

Gaussian curvature Let M be a manifold with dimension 2. Then TpM is
the only tangent plane at p. Then sectional curvature K becomes a real­
valued function on M , called the Gaussian curvature of M .
rel. sectional curvature

Gauss­Kronecker curvature For an orientable hypersurface M ⊂ Rn+1
ν , the

function det S is called the Gauss­Kronecker curvature , where the shape
operator S of M derive from a unit vector field.

Gauss lemma Let o ∈ M and 0 6= x ∈ ToM . If vx, wx ∈ Tx(To(M)) with vx
radial, then

〈dexpo(vx),dexpo(wx)〉 = 〈vx, wx〉.
The above result is called the Gauss lemma.

Gauss Theorema Egregium The Gaussian curvatureK of a surface is invariant
by local isometries.

generalized Euclidean space Let I be an arbitrary index set and RI denote the
I­fold product of R with itself. An element of RI is a function from I to
R, denoted in “tuple notation” by (xα)α∈I . The generalized Euclidean space
EI is the subset of RI consisting of all points (xα)α∈I such that xα = 0 for
all but finitely many values of α. EI is topoloized by the metric

|x− y| = max
α∈I
{|xα − yα|} .

facta. If ǫα is the map of I into R whose value is 1 on the index α and 0 on
all other element of I , then the set {ǫα|α ∈ I} is a basis forEI . (Of course,
it is not a basis for RI .)
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general linear group Let K be a field. The general linear group GL(n,K) is the
multiplicative group of all nonsingular n× n matrices over K .
facta. For any a ∈ GL(n,K), det a 6= 0.
rel. special linear group

genus of a surface Every compact connected Riemannian surfaces S ⊂ R3 is
homeomorphic to a sphere with a certain number g of the handles. The
number

g =
2− χ(S)

2

is called the genus of S, where χ(S) is the Euler­Poincaré characteristic of
S.

geodesic A geodesic in a semi­Riemannian manifold M is a curve γ : I−→M is a
curve whose vector field γ′ is parallel.
facta. 1. Geodesics are the curves of acceleration zero : γ′′ = 0.
2. When γ is a geodesic in M , γ′ is an integral curve of some vector field.
3. If α is an integral curve of a vector field, then π ◦ α is a geodesic in M .

geodesically complete The spacetime is geodesically complete if all inextendible
geodesics are complete.

geodesically connected For a manifold M , M is geodesically connected if ar­
bitrary points in M can be joined by any geodesic at all, much less a
minimizing one.
facta. It is equivalent to all exponential maps of M being onto.

geodesically singular spacetime A causal incomplete spacetime is called a
geodesically singular spacetime .

geodesic flow refer to geodesic spray

geodesic spray Let g be a semi­Riemannian metric on M and let XE be the
associated Lagrangian vector field for L(v) = 1

2g(v, v). XE is called the
geodesic spray and its flow is called the geodesic flow.

geodesic variation refer to Jacobi vector field

geometric realization If the abstract simplicial complex S is isomorphic with
the vertex scheme of the simplicial complex K , we call K a geometric
realization of S. It is uniquely determined up to a linear isomorphism.
rel. vertex scheme

germ of a function Let M be a manifold. Functions f and g defined on open
sets containing m ∈ M are said to have the same germ at m if they agree
on some neighborhood of m. This introduces an equivalence relation
on the smooth function defined on neighborhoods of m, two functions
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being equivalent if and only if they have the same germ. The equivalence

classes are called the germs and we denote the set of all germs atm by F̃m.
facta. The operations of addition, scalar multiplication and multiplication

of functions on F̃m induces the structure of algebra over R.

global hyperbolicity A subsetH ofM is globally hyperbolic provided the strong
causality condition holds and for each p < q in H , the set J(p, q) =
J+(p)

⋂
J−(q) is compact and contained in H .

global isometry refer to symmetric space

global time function A continuous function f : M−→R is a global time function
if f is strictly increasing along each future pointing causal curve.

gradient The gradient grad f of a function f ∈ F(M) is the vector field metrically
equivalent to the differential df ∈ X ⋆(M). Thus

〈grad f,X〉 = df(X) = Xf,

for all X ∈ X (M).

Grassman algebra refer to exterior algebra

Grassman manifold Unoriented p­subspace of n­space, where n = p+ q.

Gpq = O(p+ q)/O(p)×O(q) = SO(p+ q)/S(O(p) +O(q)),

where O(n) is a n­dimensional orthogonal group .
Let Gpq be the set of all p­dimensional subspaces of Rn, n = p + q, then
Gpq is called Grassman manifold .

Green’s identities Let M be an oriented Riemannian manifold. Let f and g be
smooth functions on M and D a regular domain in M . If ~n is the unit
outer normal vector field along ∂D and we denote ∂g/∂n by ~n(g), then

∫

∂D

f
∂g

∂n
=

∫

D

〈grad f, grad g〉 −
∫

D

f △ g (Green’s first identity);

∫

∂D

(
f
∂g

∂n
− g ∂f

∂n

)
=

∫

D
(g△ f − f △ g) (Green’s second identity),

where△f is the Laplacian of f .

Green’s operator LetEp(M) andHp(M) be sets of differential p­forms and har­
monicp­forms, respectively. Define the Green’s operatorG : Ep(M)−→(Hp)⊥

by setting G(α) equal to the unique solution of△ω = α−H(α) in (Hp)⊥.
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group of affine motion Let K be the product manifold GL(n,R) × Rn. By
setting (A1, v1)(A2, v2) = (A1A2, A1v2 + v1), we have a group structure on
K and hence K becomes a Lie group. This Lie group is the group of affine
motion of Rn when if we identify the element (A, v) of K with the affine
motion x 7→ Ax+v of Rn, then the operation inK is composition of affine
motions.
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H
Hadamard’s theorem Let H be a complete, simply connected Riemannian

manifold with sectional curvature K ≤ 0. Then for each p ∈ H , the
exponential map expp : TpH−→H is a diffeomorphism . In particular,

i. H is diffeomorphic to Rn.

ii. For p, q ∈ H , there is a unique geodesic γ : R−→M such that γ(0) = p
and γ(1) = p.

facta. Such manifolds have the same manifold structure as Euclidean
space and share the well­known Euclidean geometric property : “two
points determines a line”.

half­density class refer to intrinsic Hilbert spaceH(Q)

Hamiltonian of a system refer to mechanical system with symmetry

Hamiltonian operator If the classical potential energy is given by the function
V on a manifold Q, the Hamiltonian operator is defined by

Hop = −1

2
△g +QV

onH(Q).

Hamiltonian system Let (M,ω) be a symplectic manifold and H : M−→R a
given Cr function. The vector field XH determined by

ω(XH , Y ) = dH · Y ;

that is,
iXHω = dH

is called the Hamiltonian vector field with energy function H . The triple
(M,ω,XH) is a Hamiltonian system.

Hamiltonian vector field refer to Hamiltonian system

harmonic p­form For the Laplacian△, let

Hp = {ω ∈ Ep(M) : △ω = 0} .

Then the element of Hp are called harmonic p­forms.
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Housdorff metric Let S be a metric space with metric d and 2S denote the set
of all subsets of S. For a ∈ S and a nonempty subset B of S, define

d(a,B) = inf{d(a, b) : b ∈ B}
and for nonempty subsets A and B of S,

~d(A,B) = sup{d(a,B) : a ∈ A}.
As this not symmetric, we define

d(A,B) = sup{~d(A,B), ~d(B,A)}.
If A 6= ∅ and B 6= ∅, define d(a,B) =∞ and d(A,B) =∞. Finally, define
d(∅, ∅) = 0. The metric d is called the Housdorff metric.

Housdorff space A topological space S is called Housdorff if each two distinct
points have disjoint closed sets have disjoint neighborhoods (that is, with
empty intersection.)
facta. A space S is Housdorff iff the diagonal set △S = {(u, u) : u ∈ S} of
S is closed in S × S in the product topology.

Heine­Borel theorem refer to Hopf­Rinow theorem

helix A curve α is called a helix if the tangent lines of α makes a constant angle
with a fixed direction.

hemisphere Let M be a semi­Riemannian manifold. The upper hemisphere
En−1

+ of Sn−1 consists of all points p = (p1, . . . , pn) in Sn−1 for which

pn ≥ 0. Similarly, the lower hemisphere En−1
− of Sn−1 consists of all points

p = (p1, . . . , pn) in Sn−1 for which pn ≤ 0.

Hermitian scalar product A Hermitian scalar product on a complex vector space V
is a function h : V × V−→C such that

i. h(v, w) is C­linear in v;

ii. h(w, v) = h(v, w);

iii. h is nondegenerate ; that is, h(v, w) = 0 for all w implies v = 0.

Hessian The Hessian of a function f ∈ F(M) is its second covariant differential
Hf = D(Df).
facta. Hf(X,Y ) = XY f − (DXY )f = 〈DX(grad f), Y 〉.

Hodge decomposition theorem For each integer p with 0 ≤ p ≤ n, Hp is
finite dimensional and we have the following orthogonal directed sum
decompositions of the space Ep(M) of smooth p­forms on M :

Ep(M) = △(Ep)⊕Hp

= dδ(Ep)⊕ δd(Ep)⊕Hp

= d(Ep−1)⊕ δ(Ep+1)⊕Hp.
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Consequently, the equation△ω = α has a solution ω ∈ Ep(M) if and only
if the p­form α is orthogonal to the space of harmonic p­forms.

Hodge star operator LetM be a Riemannian n­manifold and let ω be a k­form.
Define an (n− k)­form ⋆ω by

(⋆ω)(vk+1, . . . , vn) = ω(v1, . . . , vk)

where v1, . . . , vn are oriented orthonormal vectors in TpM for fixed p ∈M .
The operator ⋆ is called Hodge star operator.
facta. 1. ⋆⋆ = (−1)k(n−k).
2. For any v, w ∈ Λk(V ), the inner product is

〈v, w〉 = ⋆(w ∧ ⋆v) = ⋆(v ∧ ⋆w).

Hom (A,G) If A and G are abelian groups, then Hom (A,G) is the set of all
homomorphisms of A into G.
facta. Hom (A,G) becomes an abelian group if we add two homomor­
phisms by adding their values in G.

homogeneous manifold A semi­Riemannian manifoldM is homogeneous pro­
vided that given any points p, q ∈ M , there is an isometry φ of M such
that φ(p) = q.
facta. A symmetric semi­Riemannian manifold is homogeneous.

homologous chains Two chains c and c′ are homologous if c − c′ = ∂p+1d for
some (p+ 1)­chain d. In particular, if c = ∂p+1d, c is said to be homologous
to zero or simply that c bounds.

homology group refer to chain complex

homology theory If A is admissible, a homology theory on A consists of three
functions

i. A function Hp defined for each integer p and each pair (X,A) in A
whose value is an abelian group .

ii. A function that for each integer p, assigns to each continuous map
h : (X,A)−→(Y,B) a homomorphism

(h⋆)p : Hp(X,A)−→Hp(Y,B).

iii. A function that for each integer p, assigns to each pair (X,A) inA, a
homomorphism

(∂⋆)p : Hp(X,A)−→Hp−1(A),

where A denotes the pair (A, ∅).
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These functions are to satisfy the following axioms where all pairs of
spaces are in A. As usual, we shall simplify notation and delete the
dimensional subscripts on h⋆ and ∂⋆.

Axiom 1 If i is the identity map, then i⋆ is the identity.

Axiom 2 (k ◦ h)⋆ = k⋆ ◦ h⋆.

Axiom 3 If f : (X,A)−→(Y,B), then the following diagram commutes:

Hp(X,A)
f⋆−→ Hp(Y,B)y∂⋆

y∂⋆

Hp−1(A)
(f |A)⋆−→ Hp−1(B)

Axiom 4 (Exactness axiom) The sequence

· · ·←−Hp(A)
i⋆←−Hp(X)

π⋆←−Hp(X,A)
∂⋆←−Hp−1(A)←−· · ·

is exact, where i : A−→X and π : X−→(X,A) are inclusion maps.

Axiom 5 (Homotopy axiom) If h and k are homotopic, then h⋆ = k⋆.

Axiom 6 (Excision axiom) Given (X,A), let U be an open set in X such
that U ⊂ int A. If (X − U,A − U) is admissible, then the inclusion
induces a homology isomorphism

Hp(X − U,A− U) ≃ Hp(X,A).

Axiom 7 (Dimension axiom) If P is an one­point space, then Hp(P ) = 0
for p 6= 0 and H0(P ) ≃ G, where G is a fixed abelian group.

Axiom 8 (Axiom of compact support) Ifα ∈ Hp(X,A), there is an admissible
pair (X0, A0) with X0 and A0 compact such that α is in the image of
the homomorphism Hp(X0, A0)−→Hp(X,A) induced by inclusion.

Above axioms are called the Eilenberg­Steenrod axioms.

homothety A diffeomorphism ψ : M−→N of semi­Riemannian manifolds
such that ψ⋆(gN ) = cgM for some constant c 6= 0 is called a homothety
of coefficient c. If c = 1, then ψ is called distance preserving. If c = −1, we
call ψ an anti­isometry.
rel. conformal mapping

Homotopy axiom refer to homology theory

homotopy equivalence Two spacesX and Y are said to be homotopy equivalent
or to have the same homotopy type if there are maps

f : X−→Y and g : Y−→X

such that g ◦ f ≃ idX and f ◦ g ≃ idY . The maps f and g are often called
homotopy equivalences and g is said to be homotopy inverse of f .
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homotopy inverse refer to homotopy equivalence

homotopy operator in cohomology Let f1 and f2 be smooth maps of M into
N . Then we have induced maps

δfi : Ek(N)−→Ek(M) for each k.

In de Rham cohomology, a homotopy operator for f1 and f2 is a collection of
linear transformations

hk : Ek(N)−→Ek−1(M)

such that
hk+1 ◦ d + d ◦ hk = δf1 − δf2.

homotopy sphere theorem Let M be a complete simply connected Riemann­
ian manifold such that K ≥ C > 0 with diam(M) > π

2
√
C

where K is the

sectional curvature of M and C is a constant curvature. Then M is called
a homotopy sphere.
cf. Poincaré conjecture

homotopy type refer to homotopy equivalence

Hopf­Rinow theorem For a connected Riemannian manifoldM , the following
conditions are equivalent:

i. As a metric space under Riemannian distance d, M is complete; that
is, every Cauchy sequence converges. (metrically completeness)

ii. There exists a point p ∈ M from which M is geodesically complete;
that is, expp is defined on the entire tangent space TpM .

iii. For any v ∈ TM , the geodesic γ(t) inM with γ′(0) = v is defined for
all t ∈ R. (geodesic completeness)

iv. Every closed bounded subset of M is compact. (Heine­Borel theorem)

Hopf’s criteria A complete, simply connected, n­dimensional Riemannian man­
ifold of constant curvature C is isometric to

the sphere if C = 1/r2,

Euclidean space Rn if C = 0,

hyperbolic space Hn(r) if C = −1/r2.

Hopf trace theorem Let K be a finte complex and let φ : Cp(K)−→Cp(K) be
a chain map. Then

∑

p

(−1)ptrace(φ,Cp(K)) =
∑

p

(−1)ptrace(φ⋆, Hp(K)/Tp(K)),

where Tp(K) is a torsion subgroup of the homology group Hp(K).
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Hubble law All distant galaxies are moving away from the earth at a rate
proportional to their distance from the earth.

Hubble number Let M(k, f) be a Robertson­Walker spacetime . The number
H0 = f ′

0/f0 is called the Hubble number. The Hubble time is defined by

H−1
0 .

Hubble time refer to Hubble number

hyperbolic angle If v andw be timelike vectors in the same timecone of Lorentz
vector space, there is a unique number ϕ ≥ 0, called the hyperbolic angle
between v and w, such that

〈v, w〉 = − |v| |w| coshϕ.

hyperquadric For r > 0 and ε = ±1, Q = q−1(εr2) is called (central) hyper­
quadrics of Rn+1

ν . It is a semi­Riemannian hypersurface of Rn+1
ν with unit

normal U = P/r and sign ε.

hyperregular Hamiltonian Let M be a manifold and H ∈ F(T ⋆M). Then H
is called a hyperregular Hamiltonian if FH : T ⋆M−→T ⋆M is a diffeomor­
phism.

hyperregular Lagrangian Let M be a manifold and L ∈ F(TM). Then L is
called a hyperregular Lagrangian if FL : TM−→T ⋆M is a diffeomorphism.

hypersurface A hypersurface in a manifold M is a submanifold S whose codi­
mension (dim M− dim S) is 1.
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I
image of a function refer to kernel of a function

imbedding An imbedding of a manifold P into M is an one­to­one immersion
φ : P−→M such that the induced map P−→φ(P ) is a homeomorphism
onto the subspace φ(P ) of M . The term embedding is often used instead
of imbedding.

immersed submanifold If the inclusion map  : P−→M is an immersion, we
call P an immersed submanifold of M .

immersion A map φ : M−→N is an immersion provided that φ is a smooth
map such that dφp is one­to­one for all p ∈M .

implicit function theorem Let U ⊂ M , V ⊂ N be open and f : U × V−→G
be Cr, r ≥ 1. For some u0 ∈ U and v0 ∈ V , assume a map D2f : N−→G
which assigns n to Df(u0, v0) · (n, 0) is an isomorphism. Then there
are neighborhoods U0 of u0 and W0 of f(u0, v0) and a unique Cr map
g : U0 ×W0−→V such that for all (u,w) ∈ U0 ×W0,

f(u, g(u,w)) = w.

On Euclidean space: Let U ⊂ Rc−d × Rd be open and let f : U−→Rd be
smooth. Let (r1, . . . , rc−d, s1, . . . , sd) be the canonical coordinate system
on Rc−d × Rd. Suppose that at the point (r0, s0) ∈ U

f(r0, s0) = 0,

and that the matrix {
∂fi
∂sj

∣∣∣∣
(r0,s0)

}

1≤i,j≤d

is nonsingular. Then there exists an open neighborhood V of r0 in Rc−d

and an open neighborhood W of s0 in Rd such that V ×W ⊂ U and there
exists a smooth map g : V−→W such that for each (p, q) ∈ V ×W ,

f(p, q) = 0 iff q = g(p).

incompressible vector field A vector fieldX on a manifoldM is incompressible
provided divX = 0.

indecomposable future set An indecomposable future set IF is an open future set
that cannot be written as a union of two proper subsets both of which are
open future sets.
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indecomposable past set An indecomposable past set IP is an open past set that
cannot be written as a union of two proper subsets both of which are open
past sets.

index The index ν of a symmetric bilinear form b on V is the largest integer that is
the dimension of spaces W ⊂ V on which b|W is negative definite.

index form The index form Iσ of a nonnull geodesic σ ∈ Ω(p, q) is the unique
symmetric bilinear form

Iσ : Tσ(Ω)× Tσ(Ω)−→R

such that if V ∈ Tσ(Ω), then

Iσ(V, V ) = L′′
p(0),

where p is any fixed endpoint variation of σ with variation vector field V .

induced connection If M is a semi­Riemannian submanifold of M , the Levi­
Civita connectionD ofM gives rise in a natural way to a functionX (M)×
X (M)−→X (M) called the induced connection on M ⊂M .

inextendible manifold refer to extendible manifold

infinitesimally symplectic mapping A linear mapping u : E−→E is infinitesi­
mally symplectic with respect to a symplectic formω ifω(ue, e′)+ω(e, ue′) =
0 for all e, e′ ∈ E; that is, if u is ω­skew. Let sp(E,ω) denote the set of
all linear mappings from E to E that are infinitesimally symplectic with
respect to ω.

inner ball In arbitrary spacetimes, the future inner ball B+(p, ǫ) [past inner ball
B−(p, ǫ)] of I+(p) [I−(p)] is given by

B+(p, ǫ) = {q ∈ I+(p) : d(p, q) < ǫ}

and
B−(p, ǫ) = {q ∈ I−(p) : d(q, p) < ǫ},

respectively.
facta. Inner balls need not be open.

inner continuous Let (M,g) be a spacetime . The set­valued function I+ is
said to be inner continuous at p ∈M if for each compact setK ⊂ I+(p) there
exists a neighborhood U(p) of p such that K ⊂ I+(q) for each q ∈ U(p).
Inner continuity of I− may be defined dually.
cf. outer continuous

inner product An inner product is a positive definite scalar product.
facta. The canonical example of inner product is a dot product on Rn, for
which v · w =

∑
viwi.
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p

B  (p,  )ε+

instantaneous observer Let M be a Minkowski spacetime . A timelike future
pointing unit vector u ∈ TpM is called an instantaneous observer at p.

integral curve A curve α : I−→M is an integral curve of V ∈ X (M) provided
that α′ = Vα; that is, α′(t) = Vα(t) for all t ∈ I .

intergal manifold of a distribution A submanifold (N,ψ) of a manifold M is
an integral manifold of a distribution D on M if

dψ(TnN) = D(ψ(m)) for each n ∈ N .

facta. Let D be a smooth distribution on M such that through each point
of M , there passes an integral manifold of D. Then D is involutive.

interior of a manifold refer to boundary of a manifold

interior of a set Let S be a topological space and A ⊂ S. Then the interior of A,
denoted int A, is the union of all open sets contained in A.
cf. closure of a set
facta. If A is open, int A = A.

intrinsic Hilbert spaceH(Q) Let Q be a manifold. Consider the set of all
pairs (f, µ), where µ is a natural measure and f is a complex measurable
function such that ∫

Q

|f |2dµ <∞.

Two pairs (f, µ)and (g, ν)will be called equivalent provided thatf
√

dµ/dν =

g. The equivalence class of (f, ν) is denoted by f
√

dµ. H(Q) is the set of
all such equivalence classes. The Hilbert space structure of H(Q) can be
defined as follows:
Pick any natural measure µ. Then the map Uµ which assigns f to f

√
dµ

is a bijection from L2(Q,µ) onto H(Q). By use of Uµ, transfer the Hilbert
space structure from L2(Q,µ) to H(Q). Such a space H(Q) is called in­
trinsic Hilbert space of Q. Every member of H is called half­density.

invariance of domain Let U be open in Rn and let f : U−→Rn be continuous
and injective. Then f(U) is open in Rn and f is an imbedding. Such
property is called the “invariance of domain”.
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invariant k­form Let M be a manifold and X a vector field on M . Let ω ∈
Λk(M). Then ω is an invariant k­form of X if LXω = 0.
cf. Killing vector field

invariant manifold If S is a submanifold of M and X ∈ X (M), then S is an
invariant manifold of X if for all p ∈ S, X(p) ∈ TpS ⊂ TpM .

invariant metric tensor If a Lie groupG acts on a manifoldM , a metric tensor
on M is G­invariant provided that for each g ∈ G, the diffeomorphism
p 7→ gp is an isometry.

inverse function theorem Let φ : M−→N be a smooth mapping. The differ­
ential map dφp at a point p ∈ M is a linear isomorphism if and only if
there is a neighborhood U of p in M such that φ|U is a diffeomorphism
from U onto a neighborhood φ(U) of φ(p) in N .

involution Let (P, ω) be a symplectic manifold, H ∈ F(P ) a Hamiltonian
and f1 = H , f2, . . . , fk constants of the motion (i.e., {fi, H} = 0 for all
1 ≤ i ≤ k). The set {f1, . . . , fk} is said to be involution if {fi, fj} = 0 for
all 1 ≤ i, j ≤ k.

involutive distribution A smooth distribution D is called involutive (or com­
pletely integrable) if [X,Y ] ∈ DwheneverX and Y are smooth vector fields
lying in D.

involutive map For a map ξ of a manifold M , ξ is involutive if ξ2 = id.

isolated element refer to discrete topology

isometric imbedding refer to isometric immersion

isometric immersion LetM andM be semi­Riemannian manifolds with metric
tensors g and g, respectively. An isometric immersion of M into M is a
smooth immersion such that φ⋆(g) = g. An isometric imbedding is a one­
to­one isometric immersion.

isometry LetM andN be semi­Riemannian manifolds with metric tensors gM
and gN . An isometry from M to N is an diffeo φ : M−→N that preserves
metric tensors φ⋆(gN ) = gM .

isotropic Let I(M) be the set of all isometries M→M . A manifold M is said
to be isotropic at p ∈ M provided that if v, w ∈ TpM have 〈v, v〉 = 〈w,w〉,
there is an isometry φ ∈ I(M) such that dφ(v) = w.

isotropy group Given p ∈ M , the isotropy group Ip(M) of M at p is the closed
subgroup Ip(M) = {φ ∈ I(M) : φ(p) = p} of I(M) consisting of all
isometries of M which fix p.
facta. Given any φ ∈ Ip(M), the differential of φ maps TpM onto TpM
since φ(p) = p. rel. action of a Lie group
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isotropy subgroup refer to action of a Lie group
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J
Jacobian function Let M and N be semi­Riemannian manifolds of the same

dimension n, oriented by volume elements dM and dN . If φ : M−→N is
a smooth mapping, the function J ∈ F(M) such that φ⋆(dN) = JdM is
the Jacobian function of φ.

Jacobian matrix Let φ : Mm−→Nn be a smooth mapping. If ξ is a coordinate
system at p in M , and η is a coordinate system at φ(p) in M , then the
matrix of dφp with respect to these coordinate bases is

(
∂(yi ◦ φ)

∂xj
(p)

)

1≤i≤n,1≤j≤m

called the Jacobian matrix of φ at p relative to ξ and η.

Jacobi equation refer to Jacobi vector field

Jacobi identity refer to Lie bracket

Jacobi metric Let g be a semi­Riemannian metric on M and V : M−→R be
bounded above (if it is not, confine attention to a compact subset of M ).
Let e > V (p) for p ∈M . The Jacobi metric is defined by

ge = (e− V )g.

Jacobi vector field If γ is a geodesic, a vector field Y on γ that satisfies the
Jacobi equation Y ′′ = RY γ′γ′ is called a Jacobi vector field. The Jacobi
equation is also called the equation of geodesic variation .
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K
Kähler manifold A semi­Riemannian manifoldM with almost complex struc­

ture J is the Kähler manifold provided

i. J preserves the metric; that is, 〈JX, JY 〉 = 〈X,Y 〉 for all X,Y ∈
X (M);

ii. J is parallel; that is, DX(JY ) = J(DXY ) for all X,Y ∈ X (M).

kernel of a function Let f : G−→H be a homomorphism. The kernel of f is
the subgroup f−1(0) of G, the image of F is the subgroup f(G) of H , and
the cokernel of f is the quotient group H/f(G). These groups are denoted
by kerf , imf and cokf , respectively.

Kepler’s second law Let α be a particle of mass m≪ M in R3 and let L be the
angular momentum of α per unit mass. Then the polar computation of L
gives

r2ϕ = L, (Kepler’s second law)

where |α| = r.
rel. angular momentum

Killing form The Killing form of Lie algebra g is the functionB : g×g−→R given
byB(X, y) = trace(adX , adY ) where adX : g−→g is the mapping sending
each Y to [X,Y ].
facta. 1. adX is a linear operator and by Jacobi identity, it is a Lie deriva­
tion.
2. The Killing form B of g is a symmetric bilinear form that is invariant
under all automorphisms of g and satisfies B([X,Y ], Z) = B(X, [Y, Z])
for X,Y, Z ∈ g.

Killing vector field A Killing vector field on a semi­Riemannian manifold is a
vector field X for which the Lie derivative of the metric tensor vanishes:
LXg = 0.

kinetic energy of a system refer to mechanical system with symmetry

Kobayashi’s proposition A homogeneous Riemannian manifold with K ≤ 0
and Ric < 0 is simply connected . The result follows from these three facts
about a homogeneous Riemannian manifold M :

i. Every maximal geodesic of M is either one­to­one or periodic.

ii. If M is not simply connected, it contains a periodic geodesic.

iii. If K ≤ 0 and Ric < 0, then M contains no periodic geodesics.
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Koszul formula When D be the Levi­Civita connection , the Koszul formula is

2〈DVW,X〉 = V 〈W,X〉+W 〈X,V 〉 −X〈V,W 〉
−〈V, [W,X ]〉+ 〈W, [X,V ]〉+ 〈X, [V,W ]〉.

rel. Levi­Civita connection

Kronrcker delta The Kronecker delta δij is a real­valued function defined by

δij =

{
1 if i = j,
0 otherwise.

Sometimes it is denoted by δij and is often called Kronecker index.

Kronrcker index If C = {Ci, ∂} is a chain complex, there is a map

Hom (Cp, G)× Cp−→G

which carries the pair (cp, cp) to the element 〈cp, cp〉 of G. It is bilinear
and is called the “evaluation map”. It induces a bilinear map

Hp(C;G)×Hp(C)−→G

which is called the Kronecker index.
cf. Kronecker delta

Kronecker map The Kronecker map

κ : Hp(C;G)−→Hom (Hp(C), G)

sends α to the homomorphism 〈α, ·〉. Formally, we define the map κ as

(καp)(βp) = 〈αp, βp〉,

using the Kronecker index.
facta. The map κ is a homomorphism.

Kruskal plane Let Q be the region in the uv­plane given by uv > − 2M
3 with

line element
ds2 = 2F (r)dudv,

where F (r) = (sM2/r)e1−r/2M. Then it is called the Kruskal plane of mass
M.
rel. Schwarzschild spacetime

Kruskal spacetime Let Q be a Kruskal plane of mass M, and let S2 be the
unit 2­sphere. The Kruskal spacetime of mass M is the warped product
K = Q ×r S2, where r is the function on Q characterized by f(r) = uv.
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And the region v > 0 in Kruskal spacetime is called a truncated Kruskal
spacetime .
facta. 1. K is the smooth manifold Q × S2 furnished with line element
2F (r)dudv + r2dσ2.
2. Kruskal spacetime is Ricci flat but not flat.
3. The timefunction t = 2M ln |v/u| is defined on the open quadrants ofQ.
rel. Schwarzschild spacetime

Kulkarni’s theorem Let p be a point of a semi­Riemannian manifold of indef­
inite metric. Let N be a well­defined function from the set of degenerate
planes in TpM to the set {−1, 0, 1} by sgn〈RXYX,Y 〉. The following
conditions on TpM are equivalent:

i. K is constant,

ii. N = 0,

iii. a ≤ K or K ≤ b, where a, b ∈ R,

iv. a ≤ K ≤ b on indefinite planes,

v. a ≤ K ≤ b on definite planes.

Künneth theorem for cohomology Let C and C′ be chain complexes that van­
ish below a certain dimension. Suppose C is free and finitely generated
in each dimension. Then there is a natural exact sequence

0−→⊕p+q=m Hp(C)⊗Hq(C′)−→Hm(C ⊗ C′)
−→⊕p+q=m Hp+1(C) ∗Hq(C′)−→0.

It splits (but not naturally) if C′ is free and finitely generated ineach
dimension.

Künneth theorem for homology Let C be a free chain complex and let C′ be a
chain complex. There is an exact sequence

0−→⊕p+q=m Hp(C)⊗Hq(C′)−→Hm(C ⊗ C′)
−→⊕p+q=m Hp−1(C) ∗Hq(C′)−→0

which is natural with respect to homomorphisms induced by chain maps.
If the cycles of C′ are a direct summand in the chains, the sequence splits,
but not naturally.

60



L
labelling of vertices Given a finite complex L, a labelling of vertices of L is an

onto map f mapping the vertex set of L to a set (called the set of labels).

Lagrange bracket If (M,ω) is a symplectic manifold and X,Y ∈ X (M), the
Lagrange bracket of the vector field X and Y is the scalar function

[[X,Y ]] = ω(X,Y ).

If (U,ϕ) is a chart onM , the Lagrange bracket of ϕ is the matrix of functions
on U given by

[[
ui, uj

]]
=

[[
∂

∂ui
,
∂

∂uj

]]
,

where ∂/∂ui are the standard basis vectors associated with the chart (U,ϕ)
regarded as local vector fields on M .
facta. 1. [[Xf , Xg]] = {f, g}.
2. A diffeomorphism f is symplectic iff it preserves all Lagrange brackets;
that is, [[f⋆X, f⋆Y ]] = f⋆[[X,Y ]].

Lagrange Multiplier theorem Let T : E−→R and S : E−→F be linear maps,
where S is surjective andE, F are finite­dimensional vector spaces. Then
T is surjective on kerS if and only if T × S : E−→R× F is surjective.

Lagrange submanifold A submanifold L ⊂ P is called Lagrangian if it is
isotropic and there is an isotropic subbundle E ⊂ TP |L such that

TP |L = TL⊕ E.

Lagrange two­form Let ω be the canonical form on T ⋆M and let L ∈ F(TM).
The form

ωL = (FL)⋆ω

is called the Lagrange two­form.

Laplace­Beltrami operator The Laplace­Beltrami operator ▽2f of a function f ∈
F(M) is the divergence of its gradient :

▽2f = div(grad f) ∈ F(M).

Sometimes it is called the Laplacian and is denoted by△f .
facta. The Laplacian of f is the contraction of its Hessian.
cf. Laplace­de Rham operator
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Laplace­de Rham operator The Laplace­de Rham operator is defined by

△ = dδ + δd,

where δ is a codifferential operator. Sometimes it is called the Laplacian.
facta. 1. The operator△ is symmetric and nonnegative.
2. On functions,△ differs in sign from the Laplace­Beltrami operator▽2.
cf. Laplace­Beltrami operator

Laplacian refer to 1. Laplace­Beltrami operator
2. Laplace­de Rham operator

leaf refer to warped product

Lefschetz fixed­point theorem LetK be a finite complex and let h : |K|−→|K|
be a continuous map. If the Lefschetz number Λ(h) is nonzero, then h has
a fixed point.

Lefschetz number LetK be a finite complex and let h : |K|−→|K| be a contin­
uous map. The number

Λ(h) =
∑

p

(−1)ptrace(h⋆, Hp(K)/Tp(K))

is called the Lefschetz number of h, where Tp(K) is the torsion subgroup of
homology group Hp(K).
facta. Λ(h) depends only on the homology class of h.

left­invariant of metric tensor A Lie group G is a group which is also an

analytic manifold such that the mapping (g,h)→gh−1 from G × G−→G
is analytic. This multiplication induces left and right translation maps
Lg, Rg, so­called left­multiplication and right­multiplication, for each g ∈ G
given respectively by

Lg(h) = gh and Rg(h) = hg.

Then a Riemannian or Lorentzian metric g forG is said to be left­invariant
[right­invariant] if 〈Lg⋆v, Lg⋆w〉 = 〈v, w〉 [〈Rg⋆v,Rg⋆w〉 = 〈v, w〉] for all
g ∈ G, v, w ∈ TG. A metric which is both left­ and right­invariant is said
to be bi­invariant.

left­multiplication refer to left­invariant

lens space Let n and k be relatively prime positive integers. The lens space
L(n, k) is a quotient space of the ball B3. Its construction is as follows:
The general point of B3 in the form (z, t), where z is complex, t is real,
and |Z|2 + t2 ≤ 1. Let λ = exp(2πi/n). Define f : S2−→S2 by

f(x) = (λkz,−t).
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Let’s identify each point x = (z, t) of the lower hemisphere E2 of S2 =
bdB3 with the point f(x) of upper hemisphereE2

+. The resulting quotient
space is called the lens space L(n, k).

Levi­Civita connection On a semi­Riemannian manifold M , there is a unique
connection D such that

i. [V,W ] = DVW −DWV

ii. X〈V,W 〉 = 〈DXV,W 〉+ 〈V,DXW 〉
for all X,V,W ∈ X (M). D is called the Levi­Civita connection of M and it
is characterized by the Koszul formula.

Levi­Civita covariant derivative refer to covariant derivative

Lie algebra A Lie algebra over R is a real vector space g furnished with bilinear
function [ , ] : g × g−→g, called its bracket operation, such that for all
X,Y, Z ∈ g,

i. [X,Y ] = −[Y,X ], (skew­symmetric)

ii. [[X,Y ], Z] + [[Y, Z], X ] + [[Z,X ], Y ] = 0. (Jacobi identity)

facta. gl(n,R) should always be made a Lie algebra by defining [x, y] =
xy − yx, where xy is matrix multiplication.

Lie bracket For V,W ∈ X (M), let

[V,W ] = VW −WV.

Then [ , ] is called Lie bracket.
facta. 1. Lie Bracket satisfies the following properties:

i. R­linearity :

[aV + bW,X ] = a[V,X ] + b[W,X ]

[X, aV + bW ] = a[X,V ] + b[X,W ]

ii. skew­symmetry : [V,W ] = −[W,V ]

iii. Jacobi identity : [X, [Y, Z]] + [Y, [Z,X ]] + [Z, [X,Y ]] = 0

Sometimes the Jacobi identity is called the first Bianchi identity.
2. Lie bracket is not F(M)­bilinear.

Lie derivative For V ∈ X (M), the tensor derivation LV such that

LV (f) = V f for all f ∈ T (M)

LV (X) = [V,X ] for all X ∈ X (M)

is called the Lie derivative relative to V .
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Lie exponential map Let g be the Lie algebra of G. The Lie exponential map
exp : g−→G sends X to αX(1), where αX is the one­parameter subgroup
of X ∈ g.

Lie group A Lie groupG is a smooth manifold that is also a group with smooth
group operation; that is, the maps

µ : G×G−→G sending (a, b) to ab

and
ζ : G−→G sending a to a−1

are both smooth.

Lie subgroup A Lie group H is a Lie subgroup of a Lie group G provided H is
both an abstract subgroup and an immersed submanifold of G.

Lie transformation group refer to action of a Lie group

lift If f ∈ F(M), the lift of f to M ×N is

f̃ = f ◦ π ∈ F(M ×N).

If x ∈ TpM and q ∈ N , then the lift x̃ of x to (p, q) is the unique vector in
T(p,q)M such that dπ(x̃) = x.

If X ∈ X (M) and q ∈ N , then the lift X̃ of X is the vector field whose
value at each point (p, q) is the lift of Xp to (p, q).
facta. The lift ofX ∈ X (M) toM ×N is the unique element of X (M ×N)
that is π­related to X and σ­related to the zero vector field on N .

lightcone refer to nullcone

lightlike curve refer to null curve

lightlike geodesically complete A semi­Riemannian manifold M is said to
be lightlike geodesically complete if all lightlike inextendible geodesics are
complete. Sometimes a lightlike geodesically completeness is called a
null geodesically completeness.

lightlike geodesically incomplete A semi­Riemannian manifold M is said to
be lightlike geodesically incomplete if some lightlike geodesic is incomplete.
Sometimes a lightlike geodesically incompleteness is called a null geodesi­
cally incompleteness.

lightlike particle A lightlike particle is a future poiting null geodesic γ : I−→M ,
i.e., 〈γ′, γ′〉 = 0.

lightlike tangent vector refer to null tangent vector
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limit sequence Let {αn} be an infinite sequence of future pointing causal
curves in M and let K be a convex covering of M . A limit sequence for
{αn} relative to K is a (finite or infinite) sequence p = p0 < p1 < · · · in M
such that

i. For each pi, there is a subsequence {αm} and for each m, numbers
sm0 < sm1 < · · · < smi such that

(a) limm→∞ αm(smj) = pj for each j ≤ i.
(b) For each j < i, the segment αm|[smj , sm(j+1)] for all m, and the

points pj , pj+1 are contained in a single set Ci ∈ K.

ii. If {pi} is infinite, it is nonconvergent. If {pi} finite, it has more than
one point and no strictly longer sequence satisfies (i).

linear differential operator A linear differential operator L of order l on the Cm­
valued smooth functions on Rn consists of an m × m matrix (Lij) in
which

Lij =

l∑

[α]=0

aαijD
α

where the aαij are smooth complex­valued functions on Rn with at least one
aαij 6≡ 0 for some i, j and for some α with [α] = l. A differential operator
L is a periodic differential operator if L is a linear differential operator for
which aαij are periodic functions.

link of a simplex refer to star of a simplex

link of a vertex refer to star of a vertex

local diffeomorphism By the property of inverse function theorem, a smooth
map φ : M−→N such that every dφp is a linear isomorphism is called a
local diffeomorphism .

local distance function A local distance function (d, U) on a spacetime (M, g) is
a convex normal neighborhood U together with the distance function
d : U × U−→R induced on U by the spacetime (U,g|U ).
facta. If p, q ∈ U , then d(p, q) = 0 if there is no future pointing timelike
geodesic segment in U from p to q. Otherwise, d(p, q) is the Lorentzian
arclength of the unique future pointing timelike geodesic segment in U
from p to q.

local extension A local extension of a manifold M is a connected open subset U

ofM having noncompact closure inM and an extension Ũ of U such that

the image of U has compact closure in Ũ .
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local isometry A smooth map φ : M−→N of semi­Riemannian manifold is
a local isometry provided each differential map dφ : TpM−→Tφ(p)N is a
linear isometry.

locally compact space A space is called locally compact if each point has a
neighborhood whose closure is compact.

locally connected space refer to connected space

locally finite A collectionL of subsets of a spaceS is locally finite provided each
point of S has a neighborhood that meets only finitely many elements of
L.
rel. fine Cr topologies

locally finite simplicial complex A simplicial complex K is said to be locally
finite if each vertex of K belong only to finitely many simplices of K .

locally Hamiltonian vector field A vector field X on a symplectic manifold
(M,ω) is called locally Hamiltonian if for every p ∈M , there is a neighbor­
hood U of p such that X restricted to U is Hamiltonian.

long exact sequence A long exact sequence is an exact sequence whose index
set is the set of integers. That is, it is a sequence that is infinite in both
directions. It may, however, begin or end with infinite string of trivial
groups.

longitudinal refer to variation

loop Let Z be a topological space and γ : [0, 1]−→Z a continuous map such
that γ(0) = γ(1) = p ∈ Z . Such γ is called a loop in Z based at p. The loop
γ is called contractible if there is a continuous map H : [0, 1]× [0, 1]−→Z
such that H(t, 0) = γ(t) and H(t, 1) = p for all t ∈ [0, 1].

Lor(M) Let Lor(M) denote the space of all Lorentz metrics for a given manifold
M .

Lorentz coordinate system A Lorentz (inertial) coordinate system in a Minkowski
spacetime M is a time­orientation­preserving isometry ζ : M−→R4

1.

Lorentzian distance function Let γ be a piecewise smooth causal curve in a
Lorentz manifold M . The Lorentzian distance function d is defined by

d(p, q) =

{
supγ L(γ) if p ≤ q
0 otherwise

facta. 1. It is not symmetric since if p < q, then d(p, q) is defined but d(q, p)
is not defined.
2. It is not finite­valued when given manifold M is totally vicious; that is,
we may have d(p, q) =∞, for some p ≤ q.
rel. arclength

66



Lorentz manifold The semi­Riemannian manifold with index ν = 1 and di­
mension n ≥ 2 is called a Lorentz manifold .

Lorentz vector space A scalar product space of index 1 and dimension ≥ 2 is
called Lorentz vector space .

lower hemisphere refer to hemisphere

L2 inner product refer to L2 norm

L2 norm On n­dimensional Euclidean space Rn, the ordinary L2 norm of ψ over
open cube Q = {p ∈ Rn : 0 < xi(p) < 2π, i = 1, . . . , n} is

‖ψ‖ =
1

(2π)n/2

(∫

Q

ψ · ψ
) 1

2

,

and 〈ψ, ϕ〉 is the L2 inner product defined by

〈ψ, ϕ〉 =
1

(2π)n

∫

Q

ψ · ϕ.

The norm ‖ψ‖∞ shall denote the uniform norm of ψ,

‖ψ‖∞ = sup
Q

|ψ|.

Lyapunov stable point refer to stable point

67



M
manifold refer to smooth manifold

manifold with boundary M is an n­dimensional manifold with boundary if each
point has a neighborhood homeomorphic with an open set ofn­dimensional
Euclidean half­space Hn.

matched covering A matched covering (U⋆,∼) of a smooth manifold M is a cov­
ering U⋆ = {Ua : a ∈ A} of M by open sets Ua together with a relation ∼
on the index set A such that for all a, b, c ∈ A,

i. a ∼ a,

ii. If a ∼ b, then b ∼ a,

iii. If a ∼ b, b ∼ c and Ua ∩ Ub ∩ Uc 6= φ, then a ∼ c.

Then ∼ is called matching relation .

matching relation refer to matched covering

material particle A material particle in M is a timelike future pointing curve
α : I−→M such that |α′(τ)| = 1 for all τ ∈ I . The parameter τ is called
the proper time of the particle.

maximal atlas An atlas on a space S is maximal if it is not contained in any
strictly larger atlas on S.

maximal causal curve A future pointing causal curve σ from p to q is said to
be maximal if the length of σ is equal to metric distance from p to q; that
is, L(σ) = d(p, q).

maximal integral curve Consider the collection of all integral curvesα : Iα−→M
of V that start at p ∈M , that is, for which α(0) = p. Then obviously α = β
on Iα ∩ Iβ . So all these curves define a single integral curve αp : Ip−→M
where Ip =

⋃
Iα. The curve αp is called the maximal integral curve of V

starting at p.
facta. Every maximal integral curve is either one­to­one, simply periodic
or constant.

maximal integral manifold A maximal integral manifold (N,ψ) of a distribution
D on a manifold M is connected integral manifold of D whose image in
M is not a proper subset of any other connected integral manifold of D.
That is, there does not exists a continuous integral manifold (N ′, ψ′) of D
such that ψ(N) is a connected integral manifold (N ′, ψ′) of D such that
ψ(N) is a proper subset of ψ′(N ′). proper subset of

maximal manifold refer to extendible manifold
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Mayer­Vietoris sequence of complexes LetK be a complex and letK0 andK1

be subcomplexes such that K = K0 ∪K1. Let A = K0 ∩K1. Then there is
an exact sequence

· · ·−→Hp(A)−→Hp(K0)⊕Hp(K1)−→Hp(K)−→Hp−1(A)−→· · ·

called the Mayer­Vietoris sequence of (K0,K1). There is a similar exact
sequence in reduced homology if A is nonempty.

mean curvature vector field The mean curvature vector field H of M ⊂ M can
be obtained by contracting to give a normal field on M and dividing by
dimension of M . Explicitly, at p ∈M ,

Hp =
1

n

n∑

i=1

εiII(ei, ei),

where e1, . . . , en is any frame on M at p and εi = 〈ei, ei〉.

Mean Ergodic theorem Let H be a Hilbert space and Ut : H−→H a strongly
continuous one­parameter unitary group (i.e., Ut is unitary for each t, is
a flow on H and for each x ∈ H , the map t 7→ Ut(x) is continuous). Let
the closed subspace H0 be defined by

H0 = {x ∈ H : Ut(x) = x for all t ∈ R}

and let π be the orthogonal projection onto H0. Then for any x ∈ H ,

lim
t→±∞

1

t

∫ t

0

Us(x)ds = π(x).

The limit is called the time average of x and is customarily denoted x.

mechanical system with symmetry A mechanical system with symmetry is a quadru­
ple (M,K, V,G), where

i. M is a Riemannian manifold with metric g = 〈 , 〉; M is called the
configuration space and the cotangent bundle T ⋆M , with its canonical
symplectic structure ω = −dθ, the phase space of the system;

ii. K ∈ F(T ⋆M) is the kinetic energy of the system defined by

K(α) =
1

2
〈α, α〉τ⋆

M
(α),

where we denote 〈 , 〉p the metric on T ⋆pM given by 〈α, β〉p =

〈g♯(p)(α),g♯(p)(β)〉p for α, β ∈ T ⋆pM and g♯ : T ⋆M−→M is the

usual isomorphism of vector bundles; g♯ = (g♭)−1 and g♭(vp) =
〈·, vpranglep;
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iii. V ∈ F(M) is the potential energy of the system;

iv. G is a connected Lie group acting onM by an action Φ : G×M−→M
under which the metric is invariant (i.e., Φ is an action by isometries)
and V is invariant; these conditions means that

K ◦ ΦT
⋆

g and V ◦ Φg = V

for all g ∈ G; Such G is called the symmetric group of the system;

v. For H ∈ F(T ⋆M),
H = K + V ◦ τ⋆M

is the Hamiltonian of the system.

metric Let R
+

denote the nonnegative real numbers with a point {+∞} ad­
joinned and topology generated by the open intervals of the form (a, b)

or (a,+∞]. Let M be a set. A metric on M is a function d : M ×M−→R
+

such that

i. d(m1,m2) = 0 iff m1 = m2;

ii. d(m1,m2) = d(m2,m1);

iii. d(m1,m3) ≤ d(m1,m2) + d(m2,m3) (triangle inequality).

The collection of subsets of M that are unions of s­disks Dε(m) such that

Dε(m) = {m′ ∈M : d(m′,m) < ε}

is the metric topology of the metric space (M,d). A topological space S is
called a metric space if S admits a metric on S. A pseudometric on a set M

is a function d : M ×M−→R
+

that satisfies (ii), (iii) and

d(m,m) = 0 for all m.

A topological space admits a pseudometric is called a pseudometric space.

metric space refer to metric

metric tensor A metric tensor g on a smooth manifold M is a symmetric nonde­
generate (0,2) tensor field on M of constant index.
facta. g ∈ T 0

2 (M) smoothly assigns to each point p of M a scalar product
gp on a tangent space TpM , and the index of gp is the same for all p.

metric topology refer to metric

Minkowski n­space refer to semi­Euclidean space

Minkowski spacetime A Minkowski spacetime M is a spacetime that is isomet­
ric to Minkowski 4­space R4

1.
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pspacelike nullcone

future

past

Misner­completeness A semi­Riemannian manifoldM is Misner­complete pro­
vided no geodesic races to infinity, that is, provided every geodesic
γ : [0, b)−→M , b <∞, lies in a compact set.
facta. 1. If M is complete, then M is Misner­complete.
2. If M is Misner­complete, then M is inextendible.
3. A Misner­complete Riemannian manifold is complete.

momentum function Given a vector field X on M , define the associated mo­
mentum function P (X) : TM−→R by

P (X)(v) = 〈X(τMv), v〉,

where τM : M−→M is the canonical projection. Define the viral function
by

G(X) = {E,P (X)}.

momentum in Minkowski spacetime refer to energy in Minkowski spacetime

Morse lemma Let f : M−→R be a smooth map with p ∈ M a nondegenerate
critical point; that is, df(p) = 0 and D2f(p) is nondegenerate. Then there
is a coordinate system about p in which p is mapped to zero and the local
representative of f satisfies

f(x) = f(0) +
1

2
D2f(0) · (x, x).

In particular, nondegenerate critical points of f are isolated.

multiplicity of a covering refer to covering map

Myers’ theorem If M is a complete connected Riemannian manifold with
Ric ≥ (n− 1)C > 0 for constant C, then

i. M is compact and has diameter ≤ π/
√
C.

ii. the fundamental group π1(M) is finite.
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N
natural coordinate function For 1 ≤ i ≤ n, let ui : Rn−→ R be the natural

coordinate function of Rn if ui sends each point p = (p1, . . . , pn) to its i­th
coordinate pi.

natural equivalence refer to natural transformation

natural transformation Let G and H be two functors from category C to cate­
gory D. A natural transformation T from G to H is a rule assigning to each
object X of C, a morphism

TX : G(X)−→H(X)

of D, such that the following diagram commutes, for all morphisms f :
X−→Y of the categry C:

G(X)
TX−→ H(X)yG(f)

yH(f)

G(Y )
TY−→ H(Y ).

If for each X , the morphism TX is an equivalence in the category D, then
T is called a natural equivalence of functors.

negative definite form refer to definite form

negative semidefinite form refer to definite form

nerve LetA be a collection of subsets of the spaceX . The nerve ofA, denoted by
N(A), is an abstract simplicial complex whose vertices are the elements
of A and whose simplices are the finite subcollections {A1, . . . , An} of A
such that

A1 ∩A2 ∩ · · · ∩An 6= ∅.

Newtonian force If α : I−→E is a Newtonian particle of massm, then the force

on α is the vector field dmα′

dt on α.

Newtonian kinetic energy If α : I−→E is a Newtonian particle of mass m,
then the kinetic energy of α is the function mv2/2 on I , where v = |α′|.

Newtonian momentum If α : I−→E is a Newtonian particle of mass m, then
the momentum of α is the vector field mα′ on α; scalar momentum is the
function m|α′| on I .

Newtonian particle A Newtonian particle is a curve α : I−→E in Newtonian
space, with I an interval in Newtonian time.

Newtonian scalar momentum refer to Newtonian momentum
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Newtonian space Newtonian space is a Euclidean 3­space E, that is, a Rie­
mannian manifold isometric to R3 (with dot product).

Newtonian spacetime The Newtonian spacetime is the Riemannian product man­
ifold R1 × E of Newtonian time and Newtonian space.

future

past

p

 3-plane of events
simultaneous with p

nondegenerate form refer to definite form

nonspacelike geodesically complete refer to causal geodesically complete

nonspacelike geodesically incomplete refer to causal geodesically incomplete

norm in an Euclidean space Let x ∈ Rn with x = (x1, . . . , xn). Then the norm
of x is defined by

‖x‖ =

[
n∑

i=1

(xi)
2

] 1
2

.

norm in a semi­Riemannian manifold Let M be a semi­Riemannian mani­
fold with metric g and p ∈M . Then the norm of p in M is defined by

|p| = g(p, p)
1
2 .

norm on a vector space A norm on a vector space E is a mapping from E into
the real numbers ‖ · ‖ : E−→R such that

i. ‖ · ‖ ≥ 0 for all e ∈ E and ‖e‖ = 0 iff e = 0;

ii. ‖λe‖ = |λ|‖e‖ for all e ∈ E and λ ∈ R;

iii. ‖e1 + e2‖ ≤ ‖e1‖+ ‖e2‖ for all e1, e2 ∈ E.

normal bundle Let Mn be a semi­Riemannian submanifold of M
n+k

and let
NM be the set

⋃{TpM⊥ : p ∈ M} of all normal vectors to M . Let
π : NM−→M be the map carrying each TpM

⊥ to p ∈ M . Then (NM,π)
become a k­vector bundle over M and is called the normal bundle of M in
M .

normal connection The normal connection D⊥ of M ⊂ M is the function D⊥ :
X (M) × X (M)⊥−→X (M)⊥ given by D⊥

V Z = nor DV Z for V ∈ X (M),
Z ∈ X (M)⊥.
D⊥
V Z is called normal covariant derivative of Z with respect to V .
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normal covariant derivative refer to normal connection

normal curvature tensor If M ⊂ M the function R⊥ : X (M) × X (M) ×
X (M)⊥−→X (M)⊥ given by

R⊥
VWX = D⊥

[V,W ]X − [D⊥
V , D

⊥
W ]X

is called the normal curvature tensor of M ⊂M .

normal curvature vector refer to umbilic

normal curvature vector field refer to totally umbilic

normal exponential map For a complete manifold M , the normal exponential
map

exp⊥ : NP−→M
sends v ∈ NP to γv(1), where γv is the M geodesic of initial velocity v.
facta. exp⊥ carries radial lines in TpP to geodesics of M normal to P at p.

normal parallel A vector field Z ∈ X (M)⊥ is normal parallel provided D⊥
V Z =

0 for all V ∈ X (M).

normal space A topological space S is called normal if each two disjoint closed
sets have disjoint neighborhoods.

nowhere dense subset refer to dense subset

n­simplex Let {a0, . . . , ak} be a geometrically independent set in Rn. Define
the n­simplex σ spanned by 0, . . . , an to be the set

x =

k∑

i=0

tiai where
k∑

i=0

ti = 1

and ti ≥ 0 for all i. The numbers ti are uniquely determined by x; they are
called the barycentric coordinates of the point x of σ with respect to a0, . . . , ak.
The points a0, . . . , ak that span σ are called the vertices of σ

nullcone LetM be a Lorentz manifold. The future [past] nullcone Λ+(p) of p inM
is the set of all points connected by a null curve; that is, Λ+(p) = bd(J+(p))
[Λ−(p) = bd(J−(p))]. The nullcone Λ(p) of p is defined by

Λ(p) ≡ Λ+(p) ∪ Λ−(p).

Sometimes it is called a lightcone.

null coordinate system A coordinate system u, v in a Lorentz surface is null
provided its coordinate curves are null.
facta. The line element has the form ds2 = 2Fdu, where as usual F =
〈∂u, ∂v〉.
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null curve A curve α in M is null if all of its velocity vectors α′(s) are null.
Sometimes α is called a lightlike curve.

null geodesically complete refer to lightlike geodesically complete

null geodesically incomplete refer to lightlike geodesically incomplete

null tangent vector A tangent vector v ∈ V is null if q(v) = 0 but v 6= 0, for
given symmetric bilinear form q. Sometimes v is called a lightlike tangent
vector.
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O
observer An observer in a Minkowski spacetime is just a material particle.

observer field An observer field on an arbitrary spacetime M is a timelike future
pointing unit vector field U .
facta. 1. Each integral curve of U is indeed an observer, parametrized by
proper time.
2. Observer fields are sometimes called reference frames.

one­form An one­form θ on a manifold M is a function that assigns to each
point p an element θp of the cotangent space T ⋆pM
facta. θ assigns a number to every tangent vector .

one­parameter group of diffeomorphisms IfX is a complete vector field with
flow psi, then the set {ψt : t ∈ R} is a group of diffeomorphisms on M .
This set is called a one­parametergroup of diffeomorphisms.

one­parameter subgroup A one­parameter subgroup in a Lie groupG is a smooth
homomorphism α from R (under addition) to G.

open cover refer to paracompact space

open neighborhood refer to topsp

open set refer to topsp

orbit refer to orbit manifold

orbit manifold Let Γ be a group of diffeomorphisms of a manifold M . For
p ∈M , the set {φ(p) : φ ∈ Γ} is called the orbit of p under Γ. The collection
of all such orbits is denoted by M/Γ. The natural map k : M−→M/Γ
sends each point to its orbit under Γ. So M/Γ becomes a manifold and k
a covering map. We call it a orbit manifold .

order of conjugacy Let Jab be the set of all Jacobi fields on σ that vanish at
a and b. Then Jab is a subspace of the n­dimensional space consisting
of those vanishing only at a. The dimension of Jab is called the order of
conjugacy of σ(a) and σ(b) along σ
cf. conjugate point

orientable manifold A manifold M is orientable provided that there exists a
collection O of coordinate systems in M whose domains cover M and
such that for each ξ, η ∈ O, the Jacobian determinant function J(ξ, η) =
det(∂yi/∂xj) > 0. (O is called an orientation atlas for M .)

orientation atlas refer to orientable manifold
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p

+O  (p,  )ε

-O  (p,  )ε

orthogonal vector Vecotrs v, w ∈ V are orthogonal, written v ⊥ w, provided
g(v, w) = 0.

outer ball The future outer ballO+(p, ǫ) [past outer ballO−(p, ǫ)] of I+(p) [I−(p)]
is given by

O+(p, ǫ) = {q ∈M : d(p, q) > ǫ}
and

O−(p, ǫ) = {q ∈M : d(q, p) > ǫ},
respectively.
facta. Since the Lorentzian distance function is lower semicontinuous
where it is finite, the outer ballsO+(p, ǫ) andO−(p, ǫ) are open in arbitrary
spacetimes.

outer continuous Let (M,g) be a spacetime . The set­valued function I+ is

said to be outer continuous at p ∈M if for each compact setK ⊂M−I+(p)

there exists some neighborhood U(p) of p such that K ⊂ M − I+(q) for
each q ∈ U(p). Outer continuity of I− may be defined dually.
cf. inner continuous
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P
pair isometry LetM be a semi­Riemannian submanifold of M . A pair isometry

from M ⊂ M to N ⊂ N is an isometry φ : M−→N such that φ|M is an
isometry from M to N .
When M = N , φ is called a congruent from M to N .

paracompact space A collection {Uα} of subsets ofM is a cover of a setW ⊂M
if W ⊂ ⋃Uα. It is an open cover if each Uα is open. A subcollection of
them Uα which still covers is called a subcover. A refinement {Vβ} of the
cover {Uα} is a cover such that for each β, there is an α such that Vβ ⊂ Uα.
A topological space is paracompact if every open cover has an open locally
finite refinement.

parallel tensor field A tensor field A is parallel provided its covariant differ­
ential zero, that is, DV A = 0 for all V ∈ X (M).

parallel translation For a curve α : I−→M and a, b ∈ I , the function

P = P ba(α) : TpM−→TqM

sending each z to Z(b) is called parallel translation along α from p = α(a).
facta. Parallel translation is a linear isometry.

parallel vector field A vector field V is parallel provided its covariant deriva­
tives DXV are zero, for all X ∈ X (M).
Let Z be a vector field on a curve α : I−→M . If Z ′ = 0, then Z is said to
be parallel.

partially future imprisoned refer to future imprisoned

partition of unity A smooth partition of unity on a manifold M is a collection
{fα : a ∈ A} of functions fα ∈ F(M) such that

i. 0 ≤ fα ≤ 1 for all α ∈ A,

ii. {suppfα : α ∈ A} is locally finite,

iii.
∑

α fα = 1.

The partition of unity is said to be subordinate to an open covering C of M
provided each set suppfα is contained in some element of C. facta. The
existence of partitions of unity subordinate to arbitrary open coverings is
equivalent to the topological property paracompactness.

past Busemann function refer to Busemann function

past Cauchy development refer to Cauchy development
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past Cauchy horizon refer to Cauchy horizon

past causal cut locus refer to future causal cut locus

past coray refer to future coray

past­directed refer to past pointing

past inner ball refer to inner ball

past nullcone refer to nullcone

past null cut locus refer to future null cut locus

past null cut point refer to future null cut point

past outer ball refer to outer ball

past pointing A tangent vector in a past causal cone is said to be past pointing
(or past­directed). A causal curve is past pointing if all its velocity vectors
are past pointing.

past pre­Busemann function refer to pre­Busemann function

past set refer to future set

past timelike cut locus refer to future timelike cut locus

past timelike cut point refer to future timelike cut locus

past­trapped refer to future­trapped

path A path from p to q in a manifold M is a continuous map α : I−→M such
that α(0) = p and α(1) = q.

path product If α ∈ P (p, q) and β ∈ P (q, r), let

(α ∗ β)(t) =

{
α(2t) for 0 ≤ t ≤ 1

2 ,
β(2t− 1) for 1

2 ≤ t ≤ 1.

Then α ∗ β is a path from p to r is called the path product of α to β.

Penrose diagram A Penrose diagram is a two­diml representation of spherically
symmetric spacetime . The radial null geodesics are represented by null
geodesics at ±45◦. Dotted lines represent the origin (r = 0) of polar
coordinates . Points corresponding to smooth boundary points which are
not singularities are represented by single lines. Double lines represent
irremovable singularities.

perfect fluid A perfect fluid on a spacetime M is a triple (U, ρ, p) where :
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i. U is a timelike future pointing unit vector field on M called the flow
vector field

ii. ρ ∈ F(M) is the energy density function ; p ∈ F(M) is the pressure
function

iii. The stress­energy tensor is

T = (ρ+ p)U⋆ ⊗ U⋆ + pg

where U⋆ is the one­form metrically equivalent to U .
facta. For the stress­energy tensor T , the condition (iii) is equivalent to the
following three equations for X,Y ⊥ U ,

(a) T (U,U) = ρ,

(b) T (X,U) = T (U,X) = 0,

(c) T (X,Y ) = p〈X,Y 〉.

period differential operator refer to linear differential operator

phase space of a system refer to mechanical system with symmetry

P ­Jacobi field A Jacobi field V on a geodesic σ normal to P is the variation
vector field of a variation x of σ through normal geodesics if and only

if V (0) is tangent to P and tan V (0) = ĨI(V (0), σ′(0)). A Jacobi field
satisfying these condition is called a P ­Jacobi field on σ.

Poincaré­Cartan theorem LetX be a complete vector field a manifoldM with
flow ψ(p, t) and let ω ∈ Λk(M). Then ω is an invariant k­form of X iff
for all oriented compact k­manifolds with boundary (V, ∂V ) and smooth
mappings φ : V−→M , we have

∫

V
(ψ ◦ φ)⋆ ω =

∫

V

φ⋆ω

independent of t.

Poincaré duality LetX be a compact triangulated homology n­manifold. IfX
is orientable, then for all p, there is an isomorphism

Hp(X ;G) ≃ Hn−p(X ;G),

where G is an arbitrary coefficient group. If X is non­orientable, there is
an isomorphism

Hp(X ; Z/2) ≃ Hn−p(X ; Z/2),

for all p.
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Poincaré half­plane The Poincaré half plane P is the region v > 0 in R3, but
with line element ds2 = (du2 + dv2)/v2.
facta. P has constant curvature K = −1.

Poincaré lemma Let U be the open unit ball in Euclidean space Rn and let
Ek(U) be the space of differential k­forms on U . Then for each k ≥ 1,
there is a linear transformation hk : Ek(U)−→Ek−1(U) such that

hk+1 ◦ d + d ◦ hk = id,

where d is the exterior differentiation.

Poisson bracket Suppose (M,ω) is a symplectic manifold and α, β ∈ X ⋆(M).
The Poisson bracket of α and β is the one­form

{α, β} = −
[
α♯, β♯

]♭
.

For f, g ∈ F(M) with Xf = (df)♯ ∈ X (M). The Poisson bracket of f and g
is the function

{f, g} = −iXf
iXgω,

that is,
{f, g} = ω(Xf , Xg).

facta. 1. {α, β} = −Lα♯β + Lβ♯α+ d(ialpha♯ iβ♯ω).
2. {f, g} = −LXf

g = LXgf.

polar map Let L : ToM−→TōM be a linear isometry, and let U be a normal
neighborhood of o inM such that expō is defined on the set L(exp−1

o (U)).
Then the mapping

φL = expō ◦ L ◦ exp−1
o : U−→M

is called the polar map of L on U .
facta. Polar maps always exist for U sufficiently small.

polyhedron refer to polytope

polytope Let K be a simplicial complex. Let |K| be the subset of Rn that is
the union of the simplices of K . Giving each simplex its natural topology
as a subspace of Rn, |K| becomes a topological space and is called the
poloytope of K or the underlying space of K . The space that is the polytope
of a simplicial complex will be called a polyheadron.
facta. |K| is Housdorff.

position vector field The position vector field P ∈ X (M) assigns to each point
p ∈ M the tangent vector Pp ∈ TpM . (intuitively a duplicate, starting at
p, of the arrow from 0 to p.)
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positive definite form refer to definite form

positive semidefinite form refer to definite form

potential energy of a system refer to mechanical system with symmetry

pre­Busemann function Let γ : I−→M be a piecewise smooth timelike curve.
For each t ∈ I , the (future/past) pre­Busemann functions b±γ,t : J∓(γ(t))−→R∪
{∓∞} of γ by

b+γ,t(p) = t− d(p, γ(t)), (future pre­Busemann function)

b−γ,t(q) = t+ d(γ(t), q). (past pre­Busemann function)

rel. Busemann function

pregeodesic A pregeodesic is a smooth curve which may be reparametrized to
be a geodesic.

presheaf A presheafP = {SU ; ρU,V }ofK­modules onM consists of aK­module
SU for each open set U in M and a homomorphism ρU,V : SV−→SU for
each inclusion U ⊂ V of open sets inM such that ρU,V = id and such that
whenever U ⊂ V ⊂W , the following diagram commutes:

SW
ρV,W−→ SV
ցρU,W

yρU,V

SU

presheaf homomorphism LetP = {SU ; ρU,V } andP ′ = {S′
U ; ρ′U,V }be presheaves

on M . A presheaf homomorphism of P to P ′ is a collection {ϕU} of homo­
morphisms ϕ : SU−→S′

U such that

ρ′U,V ◦ ϕV = ϕU ◦ ρU,V

whenever U ⊂ V . A presheaf isomorphism is a presheaf homomorphism
{ϕU} in which each ϕU is an isomorphism of K­modules.

presheaf isomorphism refer to presheaf homomorphism

product neighborhood Let M be an n­manifold with boundary. Let’s say
bdM has a product neighborhood in M if there is a homeomorphism

h : bdM × [0, 1)−→U

whose image of an open set inM , such that h(x, 0) = x for each x ∈ bdM .
cf. product topology
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product topology Let S and T be topological spaces and S ×T = {(u, v) : u ∈
S and v ∈ T }. The product topology on S × T consists of all subsets that
are unions of sets of the form U × V , where U is open in S and V is open
in T . Thus these open rectangles form a basis for the topology.

projection The projection π : TM−→M is a map which sends v ∈ TpM to p.
facta. π−1(p) = TpM

projection on sheaf refer to sheaf

projective n­space Let’s introduce an equivalence relation on the n­sphere Sn

by defining x ∼ −x for each x ∈ Sn. The resulting quotient space is called
(real) projective n­space and denoted Pn.

projective plane The projective plane P 2 is defined as the space obtained from
the 2­sphere S2 by identifying x with −x for each x ∈ S2.

proper face of simplex refer to abstract simplicial complex

properly discontinuous A group Γ of diffeomorphisms of a manifold M is
properly discontinuous (and acts freely) provided

i. Each point p ∈ M has a neighborhood U such that if φ(U) meets U
for φ ∈ Γ then φ ∈ id.

ii. Points p, q ∈ M not in the same orbit have neighborhoods U and V
such that for every φ ∈ Γ, φ(U) and V are disjoint.

facta. The deck transformation group of any covering is properly discon­
tinuous.

proper time refer to material particle

proper time function refer to proper time synchronizable

proper time synchronizable field An observer field U o M is proper time syn­
chronizable provided there exists a function t ∈ F(M) such that U =
−grad t. Then t is called a proper time function on M .

pseudometric refer to metric

pseudometric space refer to metric

pseudo n­manifold refer to relative pseudo n­manifold

pseudo­Riemannian manifold refer to semi­Riemannian manifold
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pseudohyperbolic space Let n ≥ 2 and 0 ≤ ν ≤ n. Then the pseudohyperbolic
space of radius r > 0 in Rn+1

ν is the hyperquadric

Hn
ν (r) = q−1(−r2)

=
{
p ∈ Rn+1

ν : 〈p, p〉 = −r2
}

with dimension n and index ν.

pseudosphere Let n ≥ 2 and 0 ≤ ν ≤ n. Then the pseudosphere of radius r > 0
in Rn+1

ν is the hyperquadric

Snν (r) = q−1(r2)

=
{
p ∈ Rn+1

ν : 〈p, p〉 = r2
}

with dimension n and index ν.

pullback Let φ : M−→N be a smooth mapping. If A ∈ T 0
s (N) with s ≥ 1, let

(φ⋆A)(v1, . . . , vs) = A(dφv1, . . . ,dφvs)

for all vi ∈ TpM , p ∈M . Then φ⋆(A) is called the pullback of A by φ.
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Q
quadratic form The function q : V−→ R given by q(v) = b(v, v) is the associated

quadratic form of b.

quantizable manifold Let (P, ω) be a symplectic manifold. (P, ω) is quantizable
if there is a principal circle bundle π : Q−→P over P and an one­form α
on Q such that

i. α is invariant under the action of S′;

ii. π⋆ω = dα.

Often one calls α a connection and ω its curvature; Q is the quantizing
manifold.

quantizing manifold refer to quantizable manifold

quasi­limit Quasi­limits of future pointing curves in a manifold is broken geodesics
that are only approximate limits, their accuracy measured by a convex
covering of M .
rel. limit sequence

quotient map A surjective map p : X−→Y is called a quotient map provided a
subset U of Y is open if and only if the set p−1(U) is open in X .

quotient topology Let S be a topological space and ∼ an equivalence on S.
Then

{U ⊂ S/ ∼: π−1(U) is open in S}
is called the quotient topology on S/ ∼.
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R
rank of a free group refer to free abelian group

ray A ray emanating from p is the set of all points in a manifold of the form p+tq,
where q is a fixed­point of M − 0 and t ranges over the nonnegative reals.

real projective n­space refer to projective n­space

reduced cohomology group refer to cochain complex

reduced homology group refer to augmentation map

reductive manifold A coset manifold M = G/H is reductive if there is an
Ad(H)­invariant subspace m of g that is complementary to h in g. Such
m is called a Lie subspace for G/H .

reference frame refer to observer field

refinement of a cover refer to paracompact space

reflexive law refer to equivalence relation

regular boundary point Let bd(M) denote a boundary of a manifold M . A
point q ∈ bd(M) is called a regular boundary point of M if there is a global

extension M̃ of M such that q may be naturally identified with a point of

M̃ .
facta. A regular boundary point may be regarded as being a removable
singularity of M .

regular curve A curve α is regular if α′(t) 6= 0 for all t.

regular Lagrangian Let M be a manifold and L ∈ F(TM). If FL is regular at
all points, then L is called a regular Lagrangian.

regular value A point q ∈ N is called a regular value of a smooth mapping
ψ : M−→N provided that dψp is onto for every p ∈ ψ−1(q).

relative pseudo n­manifold A simplicial pair (K,K0) is called a rlative pseudo
n­manifold if :

i. The closure of |K| − |K0| equals a union of n­simplices.

ii. Each (n − 1)­complex of K not in K0 is a face of exactly two n­
simplices of K .

iii. Given two n­simplices σ, σ′ of K not in K0, there is a sequence of
n­simplices of K not in K0

σ = σ0, σ1, . . . , σk = σ′

such that σi ∩ σi+1 is an (n− 1)­simplex not in K0, for each i.
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If K0 = ∅, K is simply called a pseudo n­manifold.

relative topology If A is a subset of a topological space S, the relative topology
on A is defined by

OA = {U ∩A : U ∈ O} .

restspace Let S be a spacelike hypersurface in M to which an observer field U
is normal at every p ∈ S. Then the infinitesimal space U⊥

p is just TpS for
every p ∈ S, hence S is called restspace of U .

residual refer to Baire space

retract refer to retraction

retraction Let A be a subspace of a topological space X . A retraction of X onto
A is a continuous map r : X−→A such that r(a) = a for each a ∈ A. If
there is a retraction map of X onto A, then A is called a retract of X .

reverse path Let α be a path from p to q, the reverse path α ∈ P (q, p) is defined
by α(t) = α(1 − t).

reverse Schwarz inequality refer to backward Schwarz inequality

reverse triangle inequality refer to backward triangle inequality

Ricci curvature tensor Let R be the Riemannian curvature tensor of M . The
Ricci curvature tensor Ric of M is the contraction C1

3(R) ∈ T 0
2 (M), whose

components relative to a coordinate system are

Rij =
∑

m

Rmijm.

facta. By the symmetry ofR, the only nonzero contractions ofR are±Ric.

Ricci equation LetR⊥ : X (M) ×X (M) ×X (M)⊥−→X (M)⊥ be the normal
curvature function of M ⊂M . Then the Ricci equation is like that

〈R⊥
VWX,Y 〉 =

〈RVWX,Y 〉+ 〈ĨI(V,X), ĨI(W,Y )〉 − 〈ĨI(V, Y ), ĨI(W,X)〉,

where X,Y ∈ X (M)⊥.

Ricci flat If the Ricci curvature tensor of a manifold M is identically zero,M is
said to be Ricci flat.
facta. A flat manifold is Ricci flat.

87



Riemannian curvature tensor LetM be a semi­Riemannian manifold with the
Levi­Civita connection D. The functionR : X (M)3−→X (M) given by

RXY Z = D[X,Y ]Z − [DX , DY ]Z

is a (1,3) tensor field on M called the Riemannian curvature tensor of M .

Riemannian distance For any points p and q of a connected Riemannian man­
ifold M , the Riemannian distance d(p, q) from p to q is the greatest lower
bound of {L(α) : α ∈ Ω(p, q)}, where Ω(p, q) is the set of all piecewise
smooth curve segments in M from p to q.

Riemannian manifold A manifold with index ν = 0 is called Riemannian
manifold.

Riemannian metric For a connected Riemannian manifoldM the Riemannian
distance function d : M ×M−→R is called the Riemannian metric on M
provided for all p, q, r ∈M :

i. d(p, q) ≥ 0, and
d(p, q) = 0 if and only if p = q (positive definite)

ii. d(p, q) = d(q, p) (symmetry)

iii. d(p, q) + d(p, r) ≥ d(p, r) (triangle inequality).

facta. d is compatible with the topology of M .

Riesz representation theorem Let M be an orientable manifold with volume
Ω. Let B denote the Borel sets of M , the σ­algebra generated by the open
(or closed or compact) subsets of M . Then there is a unique measure µΩ

on B such that for every continuous function of compact support,

∫
fdµΩ =

∫

Ω

f.

right­invariant refer to left­invariant

right­multiplication refer to left­invariant

Robertson­Walker spacetime Let S be a connected three­dimensional Rie­
mannian manifold of constant curvature k = −1, 0, or 1. Let f > 0 be a
smooth function on an open interval I in R1

1. Then the warped product

M(k, f) = I ×f S

is called a Robertson­Walker spacetime.
facta. 1. M(k, f) is the manifold I×Swith the line element−dt2+f 2(t)dσ2,
where dσ2 is the line element of S.
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M(k,f)
t
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t

t

t1S(t  )1

R1
1

S

pµ qµ

p q

2S(t  )2

0
S(t  )0

2. Above f is called the scale function .
3. The Riemannian manifold S is called the space of M(k, f).
4. Every plane containing a vector of flow vector field U = ∂t has curva­
ture Ku = f ′′/f .
5. Every plane tangent to a spacelike slice has curvature

Kσ = ((f ′)2 + k)/f 2.

6. We call the curvatures in (4) and (5) the principal sectional curvatures of
M(k, f).
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S
saturated subset A subset C of X is saturated with respect to a quotient map p if

it equals the complete inverse image p−1(A) of some subset A of Y .
rel. quotient map

saturation of a set Let X⋆ be a partition of X into closed sets and let p :
X−→X⋆ be the quotient map. For each closed setA ofX , the set p−1(p(A))
is called the saturation of A.

scalar curvature The scalar curvature S of M is the contraction C(Ric) ∈ F(M)
of its Ricci tensor . In coordinates,

S =
∑

gijRij =
∑

gijRkijk.

Contracting relative to a frame field yields

S =
∑

i6=j
K(Ei, Ej) = 2

∑

i<j

K(Ei, Ej).

facta. dS = 2divRic.

scalar momentum in Minkowski spacetime refer to energy in Minkowski space­
time

scalar product A scalar product g on a vector space V is a nondegenerate sym­
metric bilinear form on V . Here V will denote a scalar product space .

scalar product space refer to scalar product

Schrödinger representation refer to full quantization

Schwarz inequality For vectors v, w in a vector space ,

|〈v, w〉| ≤ |v| |w| ,

with equality if and only if v and w are independent, i.e., collinear.

Schwarzschild black hole refer to Schwarzschild exterior spacetime

Schwarzschild exterior spacetime For M > 0, let PI and PII be the regions
r > 2M and 0 < r < 2M in the tr­half­plane R1×R+, each furnished with
line element −hdt2 + h−1dr2, where h(r) = 1 − (2M/r). If S2 is the unit
sphere, then the warped product N = PI ×r S2 is called Schwarzschild
exterior spacetime and B = PII × S2 the Schwarzschild black hole, both of
mass M.
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Schwarzschild observer The integral curves α of observer field U = ∂t/
√
h

are called Schwarzschild observers.

Schwarzschild spacetime The Schwarzschild spacetime is the spacetime with
the following properties:

i. static;

ii. spherical symmetry;

iii. normalization;

iv. Minkowski at infinity and vacuum (i.e., Ricci flat).

Schwarzschild spherical coordinate system Let ϑ, ϕ be spherical coordinates
on the unit sphere S2. Let t, r be the usual Schwarzschild time and radius
coordinates onPI∪PII . The product coordinate system (t, r, ϑ, ϕ) inU∪B
is called Schwarzschild spherical coordinate system .

second countable space refer to second countable topology

second countable topology Let S be a topological space. The topology is
called second countable if it has a countable basis. Such a space S is called
a second countable space.

second fundamental form The symmetric (0,2) tensorBmetrically equivalent
to the shape operator S is traditionally called the second fundamental form
of M ⊂M .
(The first fundamental form is just the metric tensor of M .)
cf. shape tensor

section Let π : E−→B be a vector bundle. A Cr section of π is a map ξ : B−→E
of class Cr such that for each b ∈ B, π(ξ(b)) = b. Let Γr(π) denote the set
of allCr sections of π, together with the obvious real infinite­dimensional
vector space structure.

sectional curvature Let Π be a nondegenerate tangent plane to M at p. For
v, w ∈ TpM , let Q(v, w) = 〈v, v〉〈w,w〉 − 〈v, w〉2. The number

K(v, w) = 〈Rvwv, w〉/Q(v, w)

is independent of the choice of basis v, w for Π and is called the sectional
curvature K(Π) of Π.

section of sheaf refer to sheaf

semi­Euclidean space The space Rnν is called semi­Euclidean space for the index
ν ≥ 0. It gives a metric tensor

〈vp, wp〉 = −
ν∑

i=1

viwi +

n∑

j=ν+1

vjwj ,

91



for v, w ∈ Rn

ν . When n ≥ 2, Rnν is called the Minkowski n­space .
facta. When ν = 0, Rnν is the Euclidean n­space.

semiorthogonal group Let GL(n,R) be a n­dimensional general linear group
on R and ε the signature matrix. A semiorthogonal group O(ν, n − ν) is
the group of all matrices g ∈ GL(n,R) that preserve the scalar product
〈v, w〉 = εv · · ·w of Rn

ν .
facta. 1. It is the same as the set of all linear isometries Rn

ν−→Rnν .
2. O(ν, n − ν) is closed subgroup of GL(n,R) and hence is itself a Lie
group.

semi­Riemannian covering map A semi­Riemannian covering map k : M̃−→M
is a covering map of semi­Riemannian manifolds that is a local isometry.

semi­Riemannian group Sometimes a Lie group furnished with a bi­invariant
metric is called a semi­Riemannian group.

semi­Riemannian manifold A semi­Riemannian manifold is a smooth manifold
M furnished with a metric tensor g. It is often called pseudo­Riemannian
manifold.

semi­Riemannian submanifold LetP be a submanifold of a semi­Riemannian
manifold M . If the pullback j⋆(g) is a metric tensor on P it makes P a
semi­Riemannian submanifold of M .

semi­Riemannian submersion A semi­Riemannian submersion π : M−→B is a
submersion of semi­Riemannian manifolds such that

i. The fibers π−1(b), b ∈ B, are semi­Riemannian submanifolds of M ,

ii. dπ preserves scalar product of vectors normal to fibers.

facta. Since the fibers of a submersion are smooth submanifolds, the
condition (i) is automatically true if M is Riemannian.

separation For points p, q in a Minkowski spacetime M , the number pq =
| ~pq| ≥ 0 is called the separation between p and q.

serpent lemma Given a homomorphism of short exact sequences of abelian
groups

0 −→ A −→ B −→ C −→ 0yα
yβ

yγ
0 −→ D −→ E −→ F −→ 0,

there is an exact sequence

0−→kerα−→kerβ−→kerγ

−→cokα−→cokβ−→cokγ−→0.

This property is called the serpent lemma.
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set of labels refer to labelling of vertices

shape operator Let U be a unit normal vector on a semi­Riemannian hyper­
surface M ⊂M . The (1,1) tensor field S on M such that

〈S(V ),W 〉 = 〈II(V,W ), U〉

for all V,W ∈ X (M), is called the shape operator of M ⊂M derived from U .
facta. A semi­Riemannian hypersurface M ⊂ M is totally umbilic if and
only if its shape operator is scalar.
rel. shape tensor

shape tensor The function II : X (M)×X (M)−→X (M)⊥ such that

II(V,W ) = nor DVW

is F(M)­bilinear and symmetric. II is called the shape tensor (or second
fundamental form ) of M ⊂M .
facta. On Rnν , isometric submanifolds are congruent if and only if they
have the same shape tensor .
cf. second fundamental form

sharp operator refer to flat operator

sheaf A sheaf S of K­module over M consists of a topological space S together
with a map π : S−→M satisfying

i. π is a local homeomorphism of S onto M .

ii. π−1(m) is a K­module for each m ∈M .

iii. The composition laws are continuous in the topology on S.

The map π is called the projection and the K­module Sm = π−1(m) is
called the stalk over m ∈ M . A continuous map f : U−→S such that
π ◦ f = id is called section of S over an open set U ⊂M .

sheaf cohomology theory A sheaf cohomology theory H for a manifold M with
coefficients in sheaves of K­modules over M consists of

i. a K­modules Hq(M,S) for each sheaf S and for each integer q;

ii. a homomorphismsHq(M,S)−→Hq(M,S′) for each homomorphism
S−→S′ and for each integer q;

iii. a homomorphism Hq(M,S′′)−→Hq+1(M,S′) for each short exact
sequence 0→S′→S→S′′→0 and for each integer q,

such that the following properties hold:
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(a) Hq(M,S) = 0 for q ≥ 0 and there is an isomorphismH0(M,S) ≃
Γ(S) such that for each homomorphism S−→S′, the diagram

H0(M,S) ≃ Γ(S)y y
H0(M,S′) ≃ Γ(S′)

commutes.

(b) Hq(M,S) = 0 for all q > 0 if S is a fine sheaf.

(c) If 0→S′→S→S′′→0 is exact, then the following is exact:

· · ·→Hq(M,S)→Hq(M,S)→Hq(M,S′′)→Hq+1(M,S′)→· · ·

(d) The identity homomorphism id : S−→S induces the identity
homomorphism id : Hq(M,S)−→Hq(M,S).

(e) If the diagram
S −→ S′
ց

y
S′′

commutes, then for each q, so does the diagram

Hq(M,S) −→ Hq(M,S′)
ց

y
Hq(M,S′′)

(f) For each homomorphism of short exact sequences of sheaves

0 −→ S′ −→ S −→ S′′ −→ 0y y y
0 −→ T ′ −→ T −→ T ′′ −→ 0

the following diagram commutes:

Hq(M,S′′) −→ Hq+1(M,S′)y y
Hq(M, T ′′) −→ Hq+1(M, T ′)

The module Hq(M,S) is called the q­th cohomology module of M with
coefficients in the sheaf S relative to the cohomology theoryH.

sheaf homomorphism refer to sheaf mapping

sheaf isomorphism refer to sheaf mapping

sheaf mapping Let S and S′ be sheaves on M with projections π and π′, re­
spectively. A continuous map ϕ : S−→S′ such that π′ ◦ ϕ = π is called
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a sheaf mapping. Obviously, sheaf mappings are necessarily local homeo­
morphisms and they map stalks to stalks. A sheaf mapping ϕ which is
a homomorphism of K­modules on each stalk is called a sheaf homomor­
phism. A sheaf iso is a sheaf homomorphism with an inverse which is also
a sheaf homomorphism.

short exact sequence A sequence of three groups and homomorphisms is
called a short exact sequence if

0−→A1
φ−→A2

ψ−→A3−→0

is exact.

signature Let g be a scalar product on a vector space V . Let e1, . . . , en be an
orthogonal basis for V .

g(ei, ej) = δijεj ,

where εj = g(ej , ej) = ±1 and δij is the Kronecker delta. The signature
for V is (ε1, . . . , εn).

signature matrix For 0 ≤ ν ≤ n, the signature matrix ε is the diagonal matrix
(δijεj) whose diagonal entries are ε1 = · · · + εν = −1 and εν+1 = · · · =
εn = +1.
facta. ε−1 = ε =t ε, where tg denotes the transpose of g.

sign of semi­Riemannian hypersurface The sign ε of semi­Riemannian hyper­
surface M of M is {

+1 if 〈z, z〉 > 0,
−1 if 〈z, z〉 < 0,

for every normal vector z 6= 0.
facta. For a Riemannian manifold , every hypersurface of Riemannian
with sign +1.

sign of the permutation refer to alternating multilinear map

simplex refer to abstract simplicial complex
cf. n­simplex

simplicial approximation Leth : |K|−→|L| be a continuous map. If f : K−→L
is a simplicial map such that

h(St v) ⊂ St f(v),

for each vertex v of K , then f is called a simplicial approximation to h.
rel. star of a vertex

simplicial complex A simplicial complex K in Rn is a collection of simplices in
Rn such that

95



i. Every face of a simplex of K is in K .

ii. The intersection of any two simplices of K is a face of each of them.

simplicial homeomorphism refer to simplicial map

simplicial map Let K and L be complexes and let f : K(0)−→L(0) be a map.
Whenever the vertices v0, . . . , vn of K span a simplex of K , the points
f(v0), . . . , f(vn) are vertices of a simplex of L. Hence f can be extended
to a continuous map g : |K|−→|L| such that

x =

n∑

i=0

tivi implies g(x) =

n∑

i=1

tif(vi).

The map g is called the (linear) simplicial map induced by the vertex map
f . If the vertex map f is an one­to­one correspondence, g becomes a
homeomorphism; that is called a simplicial homeomorphism of K with L.

simply connected manifold A manifold M is simply connected provided M
is connected and its fundamental group is trivial, that is, reduces to the
identity element .

singular point refer to critical point

skeleton Let K be a simplicial complex. A subcomplex of K such that the
collection of all simplices of K of dimension at most p is called the p­
skeleton of K and is denoted by K(p). The points of collection K(0) are
called the vertices of K .

skew­symmetric tensor field refer to symmetric tensor field

slice Let (U, φ)be a coordinate system onM with coordinate functionsx1 , . . . , xd
and c an integer with 0 ≤ c ≤ d. Let a ∈ ϕ(U) and let

S = {q ∈ U : xi(q) = ri(a), i = c+ 1, . . . d}.

The subspace S of M together with the coordinate system {xj}1≤j≤c on
S forms a submanifold of M which called a slice of the coordinate system
(U,ϕ).

smooth distribution refer to distribution

smooth function on Euclidean space A function φ from an open set U in Rn

is smooth if each real­valued function ui ◦ φ is smooth, where ui is the
natural coordinate function (1 ≤ i ≤ n).

smooth function on manifold A function φ : Mm−→Nn is smooth provided
that for every coordinate system ξ in M and η in N , the coordinate ex­
pression ψ ≡ η ◦ φ ◦ ξ−1 is Euclidean smooth.

96



M N

Rm
Rn

ξ

φ

η

ψ

smooth manifold A smooth manifold M is a Housdorff space furnished with a
complete atlas. Simply, it is called a manifold.
facta. 1. A manifold is second countable locally Euclidean space.
2. Euclidean spaces Rn are manifolds.
3. The spheres Sn = {a ∈ Rn+1 : |a| = 1} are manifolds.

smooth one­form Let θ be a smooth one­form on M if θX is smooth for all
X ∈ X (M).

smooth vector field A vector fieldV is smooth ifV f is smooth for all f ∈ F(M).

space form A space form is a complete connected semi­Riemannian manifold
of constant curvature .
facta. 1. Simply connected space forms are isometric if and only if they
have the same dimension, index and constant curvature.

spacelike curve A curve α in M is spacelike if all of its velocity vectors α′(s)
are spacelike.

spacelike geodesically complete A semi­Riemannian manifold M is said to
be spacelike geodesically complete if all spacelike inextendible geodesics are
complete.

spacelike geodesically incomplete A semi­Riemannian manifold M is said to
be spacelike geodesically incomplete if some spacelike geodesic is incomplete.

spacelike tangent vector A tangent vector v to M is spacelike if q(v, v) > 0 or
v = 0, where q is a symmetric bilinear form.

spacetime A spacetime (M,g) is a connected time­oriented four­dimensional
Lorentz manifold. (Informally, time­oriented is often weakened to time­
orientable.)

spatial pressure gradient refer to force equation

special linear group Let K be a field. The special linear group SL(n,K) is the
multiplicative group of all n × n unimodular matrices over K ; that is,
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det a = −1 for all a ∈ SL(n,K).
facta. For the determinant function det : GL(n,R)−→R− {0}, the kernel
of det is SL(n,R), thus SL(n,R) is a closed subgroup of GL(n,R).
rel. general linear group

split sequence Consider a short exact sequence

0−→A1
φ−→A2

ψ−→A3−→0.

This sequence is called split if the group φ(A1) is a direct summand in A2;
that is, A2 = φ(A1)⊕B for some subgroup B of A2.

stable point Let p be a critical point of vector field X . Then p is stable (or,
Lyapunov stable) if for any neighborhood U of p, there is a neighborhood
V of p such that if q ∈ V , then p is complete to positive direction abd the
flow ψλ(m) ∈ U for all λ ≥ 0.

stably causal Let Lor(M) denote the space of all Lorentz metrics on M . A
spacetime (M,g) is said to be stably causal if there is a fineC0 neighborhood
U(g) of g in Lor(M) such that each h ∈ U(g) is causal.

stalk refer to sheaf

standard fiber refer to vector bundle

standard metric refer to Euclidean metric

standard static spacetime Let S be a 3­dimensional Riemannian manifold , I
an open interval, and g > 0 a smooth function on S. Let t and σ as usual
be the projections of I × S onto I and S. The standard static spacetime
Ig × S is the manifold I × S with line element

−g(σ)2dt2 + ds2,

where ds2 is the lift of the line element of S.

star condition Let h : |K|−→|L| be a continuous map. Let’s say that h satisfies
the star condition with respect to K and L if for each vertex v of K , there is
a vertex w of L such that

h(St v) ⊂ St w.

star in Schwarzschild spacetime The star is assumed to be static and spheri­
cally symmetric and to be the only source of gravitation for the spacetime.

star of a simplex Let s be a simplex of the complex K . The star of s in K ,
denoted by St s, is the union of the interiors of all simplices of K having
s as a face. Its closure, denoted by St s, is called the closed star of s in K .
The link of s in K , denoted Lk s, is the union of all simplices of K lying in
St s that are disjoint from s.
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star of a vertex If v is a vertex of a simplicial complex K , the star of v in K ,
denoted by St v or St (v,K), is the union of the interiors of those simplices
of K that have v as a vertex. Its closure, denoted by St v, is called the
closed star of v in K . The set St v − St v is called the link of v in K and is
denoted by Lk v.

starshaped space A subset S of a vector space is starshaped about 0 if v ∈ S
implies tv ∈ S for all 0 ≤ t ≤ 1.

static spacetime A spacetime M is static relative to an observer field U pro­
vided U is irrotational and there is a smooth function g > 0 on M such
that gU is a Killing vector field .

Steenrod five­lemma Suppose one is given a commutative diagram of abelian
groups and homomorphisms :

A1 −→ A2 −→ A3 −→ A4 −→ A5yf1

yf2

yf3

yf4

yf5

B1 −→ B2 −→ B3 −→ B4 −→ B5

where the horizontal sequences are exact. If f1, f2, f4 and f5 are isomor­
phisms, so is f3.

Stokes’ theorem LetM be an oriented smooth n­manifold with boundary and
α ∈ Λn−1(M) have compact support. Let i : ∂M−→M be the inclusion
map such that i⋆α ∈ Λn−1(∂M). Then

∫

∂M

i⋆α =

∫

M

dα

or, in brief form, ∫

∂M

α =

∫

M

dα.

Above ⋆ is the Hodge star operator.

stress­energy tensor refer to perfect fluid

strong causality condition The strong causality condition holds at p ∈ M pro­
vided that given any neighborhood U of p, there is a neighborhood V ⊂ U
of p such that every causal curve segment with endpoints in V lies entirely
in U .

strong energy condition In terms of the stress­energy tensor of a manifold M ,
the timelike convergence condition becomes

T (u, u) ≥ 1

2
C(T )〈u, u〉

for all timelike (and null) tangent vectors to M . This condition is called
the strong energy condition on M .
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subcomplex refer to abstract simplicial complex

subcover refer to paracompact space

submanifold A manifold S is a submanifold of a manifold M provided:

i. S is a topology subspace of M

ii. The inclusion map  : S ⊂M is smooth and its differential map d is
one­to­one at each point p ∈ S.

submersion A mappingψ : M−→B is a submersion provided thatψ is a smooth
mapping onto B such that dψp is onto for all p ∈M .

subordinate to a covering refer to partition of unity

subsheaf An open set B in the sheaf S such that the subset Bm = B ∩ Sm is a
submodule of Sm for each m ∈M is called a subsheaf of S.

support The support of f ∈ F(M) is the closure of the set {p ∈ M : f(p) 6= 0}
and denoted by suppf .

suspension of a complex LetK be a complex and let w0 ∗K andw1 ∗K be two
cones on K whose polytopes intersect in |K| alone. Then

S(K) = (w0 ∗K) ∪ (w1 ∗K)

is a complex and is called a suspension of K .
facta. Given K , the complex S(K) is uniquely defined up to a simplicial
isomorphism.

suspension of a space Let X be a space. The suspension of X is the quotient
space ofX×1 to a point, and the subsetX× (−1) to a point. It is denoted
S(X). w0 ∗K and w1 ∗K be two cones on K whose polytopes intersect in
|K| alone. Then

S(K) = (w0 ∗K) ∪ (w1 ∗K)

is a complex and is called a suspension of K .
facta. Given K , the complex S(K) is uniquely defined up to a simplicial
isomorphism.

symmetric law refer to equivalence relation

symmetric space A semi­Riemannian symmetric space is a connected semi­
Riemannian manifold M such that for each p ∈ M , there is a (unique)
symmetry ζp : M−→M with differential map −id on TpM . The isometry
ζp is called the global isometry of M at p.
facta. 1. Symmetry implies local symmetry.
2. Rn, Sn are symmetric .
3. Every connected hyperquadric is symmetric .
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symmetric tensor field Let A be a covariant or contravariant tensor of type at
least 2. A is symmetric if transposing any two of its argument leaves its
value unchanged. A is skew­symmetric if each such reversal produces a
sign change.

symplectic eigenvalue theorem Suppose (E,ω) is a symplectic vector space,
f ∈ Sp(E,ω) and λ is an eigenvalue of f of multiplicity k. Then 1/λ is
an eigenvalue of f of multiplicity k. Moreover, the multiplicities of the
eigenvalues +1 and −1 are even if they occur.

symplectic form on a manifold refer to symplectic manifold

symplectic form on a vector space refer to symplectic vector space

symplectic group Let (E,ω) be a symplectic vector space. Then the set of all
symplectic mappings f : E−→E forms a group under composition. It is
called the symplectic group, denoted by Sp(E,ω).

symplectic manifold A symplectic form (or a symplectic structure) on a manifold
M is a nondegenerate closed two­form ω on M . A symplectic manifold
(M,ω) is a manifold M together with a symplectic form ω on M .

symplectic map refer to symplectic vector space

symplectic structure refer to symplectic manifold

symplectic vector space A symplectic form on a vector spaceE is a nondegener­
ate two­form ω ∈ Λ2(E). The pair (E,ω) is called a symplectic vector space.
If (E,ω) and (E, ρ) are symplectic vector spaces, a linear map f : E−→F
is symplectic if f⋆ρ = ω.

synchronizable field An observer fieldU onM is synchronizable provided there
are smooth function h > 0 and t on M such that U = −hgrad t.
facta. A synchronizable observer field is irrotational, since U is normal to
the level hypersurfaces of t, which are restspaces.
rel. restspace

Synge’s formula for second variation Let σ : [a, b]−→M be a geodesic se­
quence of speed c > 0 and sign ε. If x is a variation of σ, then

L′′(0) =
ε

c

∫ b

a

{
〈
⊥
V

′
,
⊥
V

′
〉 − 〈RV σ′V, σ′〉

}
du+

ε

c
〈σ′, A〉

∣∣∣
b

a
,

where V is the variation vector field ,A the transverse acceleration vector
field of x.
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T
tangent bundle For a manifold M , let tangent bundle TM of M be the set⋃{TpM : p ∈M} of all tangent spaces to M .

tangent space The tangent space to M at p is the set of all tangent vectors to M
at p and denoted by TpM .

tangent vector The tangent vector to M at p is the real­valued function v :
F(M)−→ R that is

i. R­linear : v(af + bg) = a(v(f) + bv(g),

ii. Leibnizian : v(fg) = v(f)g + fv(g), for a, b ∈ R and f, g ∈ F(M).

Taylor’s theorem A map f : U ⊂ E−→F is a class Cr iff there are continuous
mappings

ϕp : U ⊂ E −→ Lps(E,F ), p = 1, . . . , r

R : Ũ −→ Lrs(E,F ),

where Ũ is a thickening of U such that for all (u, h) ∈ Ũ ,

f(u+ h) = f(u) +
ϕ1(u)

1!
h+

ϕ2(u)

2!
h2 + · · ·+ ϕr(u)

r!
hr +R(u, h)hr,

where hr = (h, . . . , h) (r­times) and R(u, 0) = 0.

tensor For integers r, s ≥ 0 not both zero, a K­multilinear function

A : (V ⋆)r × V s−→K

is called a tensor of type (r,s) over V . The set of all tensors of type (r,s) over
V is denoted by T rs (V ) and T rs (V ) is a module over K .
facta. T 0

0 (M) = F(M).

tensor derivation A tensor derivation D on a smooth manifold M is a set of R­
linear functions

D = Drs : T rs (M)−→T rs (M) (r, s ≥ 0)

such that for any tensors A and B,

i. D(A ⊗B) = DA⊗B +A⊗DB,

ii. D(CA) = C(DA), for every contraction C.

facta. D is R­linear.
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tensor field A tensor field A on a manifoldM is a tensor over the F(M)­module
X (M), such that

A : X ⋆(M)r ×X (M)s−→F(M)

with (θ1, . . . , θr, X1, . . . , Xs) 7−→ f . Here θi occupies the i­th contravariant
slot, Xj the j­th covariant slot of A.

terminal indecomposable future set A terminal indecomposable future set TIF is
a subset S of M such that

i. S is an indecomposable future set.

ii. S is not the chronological future of any point p ∈M .

terminal indecomposable past set A terminal indecomposable past set TIP is a
subset S of M such that

i. S is an indecomposable past set.

ii. S is not the chronological past of any point p ∈M .

test particle A particle whose energy­momentum makes negligible contribu­
tion to the stress­energy tensor is called a test particle.

thickening of a set Let U ⊂ E be an open set. As + : E × E with

i. U × {0} ⊂ Ũ ;

ii. u+ ξh ∈ U for all (u, h) ∈ Ũ and 0 ≤ ξ ≤ 1;

iii. (u, h) ∈ Ũ implies u ∈ U .

The set
Ũ =

{
(+)−1(U)

}⋂
{U × E}

is called a thickening of U .

tidal force operator For a vector 0 6= v ∈ TpM , the tidal force operator Fv :
v⊥−→v⊥ is given by Fv(y) = Ryvv.
facta. Fv is self­adjoint linear operator on v⊥ and traceFv = −Ric(v, v).

time average refer to Mean Ergodic theorem

timecone Let T be the set of timelike vectors in a Lorentz vector space V . For
u ∈ T ,

C(u) = {v ∈ T : 〈u, v〉 < 0}
is the timecone of V containing u. The opposite timecone is

C(−u) = −C(u) = {v ∈ T : 〈u, v〉 > 0} .
facta. 1. Since u⊥ is spacelike , T is the disjoint union of these two
timecones.
2. Timecones are convex.
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timelike Cauchy complete The causal spacetime (M,g) is called timelike Cauchy
complete if any sequence {pn} of points with pn ≪ pn+m for 1 ≤ n,m <∞
and d(pn, pn+m) ≤ Bn [or else pn+m ≪ pn and d(pn+m, pn) ≤ Bn] for all
m ≥ 0, where Bn→0 as n→∞, is a convergent sequence .

timelike curve A curve α in M is timelike if all of its velocity vectors α′(s) are
timelike.

timelike convergence condition For all timelike tangent vectors to M , the
timelike convergence condition is

Ric(u, u) ≥ 0.

It says that, on average, gravity attracts.

timelike geodesically complete A semi­Riemannian manifold M is said to be
timelike geodesically complete if all timelike inextendible geodesics are com­
plete.

timelike geodesically incomplete A semi­Riemannian manifold M is said to
be timelike geodesically incomplete if some timelike geodesic is incomplete.

timelike tangent vector A tangent vector v to M is timelike if q(v, v) < 0,
where q is a symmetric bilinear form.

time­orientable If a manifold M admits a time­orientation, M is said to be
time­orientable.

time­orientation Let τ be a smooth function on M that assigns to each point
p a timecone τp in TpM , that is, for each p ∈ M there is a smooth vector
field V on some neighborhood U of p such that Vq ∈ τq for each q ∈ U .
The τ is called a time­orientation of M .

time separation If p, q ∈M , the time separation τ(p, q) from p to q is

sup {L(α) : α is future pointing causal curve segment from p to q} .

The time separation τ(A,B) of subsets A and B of M is

sup {τ(a, b) : a ∈ A, b ∈ B} .

facta. τ need not be continuous.

topological group A topological group G is an abstract group G which has a
topology such that the map (σ, τ) 7→ στ−1 of G×G−→G is continuous.

topological hypersurface A subspS of a topological manifold T is a topological
hypersurface provided that for each p ∈ S, there is a neighborhood U of
p in T and a homeomorphism of U onto an open set in Rn such that
φ(U ∩ S) = φ(U) ∩Π, where Π is a hyperplane in Rn.
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topological manifold An n­dimensional topological manifold T is a Housdorff
space such that each point has a neighborhood homeomorphic to an open
set in Rn.

topological space A topsp is a set S together with a collection O of subsets
called open sets such that

i. ∅ ∈ O and S ∈ O;

ii. If U1, U2 ∈ O, then U1 ∩ U2 ∈ O;

iii. The union of any collection of open sets is open.

For such a topological space, the closed sets are the elements of the set

{A|CA ∈ O} ,

where C denote the complement, CA = S A = {s ∈ S|s 6∈ A}. An open
neighborhood of a point u in a topological space S is an open set U such that
u ∈ U . Similarly, for a subset A of S, U is an open neighborhood of A if U is
open and A ⊂ U .

topological sum Suppose E is a space that is the union of disjoint subspaces
Eα, each of which is open (and closed) in E. Then E is called the topl sum
of the spaces Eα and is denoted E =

∑
Eα.

topologist’s sine curve The topologist’s sine curve is the subspace of R2 con­
sisting of all points (x, sin 1

x ) for 0 ≤ x < 1, and all points (0, y) for
−1 ≤ y ≤ 1.

torsion coefficients refer to Fundamental theorem of finitely generated abelian
groups

torsion­free connection For a connectionD,D is called torsion­free if its torsion
tensor is zero; that is, [X,Y ] = DXY +DYX .
facta. For a semi­Riemannian manifold, the Levi­Civita connection is
torsion­free.

torsion­free group A group is torsion­free if the subgroup generated by each
element except the identity is infinite.

torsion tensor For an arbitrary connection D on a manifold M , the torsion
tensor of D is a (1,2) tensor field on M satisfying

T (X,Y ) = [X,Y ]−DXY +DYX,

where X,Y ∈ X (M).

torsion subgroup Let G be an abelian group. The set of all elements of finite
order in G is a subgroup of G and is called the torsion subgroup of G.
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totally geodesic A semi­Riemannian submanifold M of M is totally geodesic
provided its shape tensor vanishes: II = 0.
facta. The followings are equivalent:

i. M is totally geodesic in M .

ii. Every geodesic of M is also a geodesic of M .

iii. If v ∈ TpM is tangent to M , then the M geodesic γv lies initially in
M .

iv. If α is a curve in M and v ∈ Tα(0)M then parallel translation of v

along α is the same for M and for M .

totally umbilic A semi­Riemannian submanifoldM ofM is totally umbilic pro­
vided every point of M is umbilic. Then there is a smooth normal vec­
tor field Z on M called the normal curvature vector field of M such that
II(V,W ) = 〈V,W 〉Z for all V,W ∈ X (M).
facta. 1. A totally geodesic submanifold is a totally umbilic submanifold
for which Z = 0.
2. The complete, connected, totally umbilic hypersurfaces of Rnν (n ≥ 3)
exactly the nondegenerate hyperplanes of Rnν and the components of
hyperquadrics .

totally vicious For a Lorentz manifold M , M is said to be totally vicious pro­
vided I(p) ≡ I+(p) ∩ I−(p) = M for all p ∈M .

total manifold refer to vector bundle

trace of a homomorphism IfG is a free abelian group with basis e1, . . . , en and
if φ : G−→G is a homomorphism, the trace of φ is defined by the number
traceA, whereA is the matrix of φ relative to the given basis. This number
is independent of the choice of basis.
rel. trace of a matrix

trace of a matrix If A = (aij) is an n × n square matrix, then the trace of A,
denoted traceA, is defined by

traceA =

n∑

i=1

aii.

If A and B are n× n matrices, then

traceAB =
∑

i,j

aijbji = traceBA.

transitive law refer to equivalence relation
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transvection An isometry φ : M−→N is a transvection along a geodesic γ :
R−→M provided

i. φ translates γ; that is, φ(γ(s)) = γ(s+ c) for all s ∈ R and some c.

ii. dφ gives parallel translation along γ; that is, if x ∈ Tγ(s)M , then
dφ(x) ∈ Tγ(s+c)M is the parallel translate of x along γ.

transitive action refer to action of a Lie group

transversal refer to variation

triangle A simple region which has only three vertices with external angles
αi 6= 0, i = 1, 2, 3, is called a triangle.

triangle inequality refer to metric

triangulation of a region A triangulation of a regular region R ⊂ S is a finite
family T of triangles Ti, i = 1, . . . , n, such that

i.
⋃n
i=1 Ti = R;

ii. If Ti ∩ Tj 6= 0, then Ti ∩ Tj is either a common edge of Ti and Tj or a
common vertex of Ti and Tj .

trivial bundle A k­vector bundle (E, π) over a manifold M is trivial provided
it has k linearly independent global sections, or equivalently a global
bundle chart φ : M × Rk ≈ E.
facta. TRn and TS1 are trivial.

trivial covering A covering k : M̃−→M is trivial if each component of M is
evenly covered by k.
facta. 1. If M is connected, k is diffeomorphism of each component C of

M̃ onto M , so λ(k|C)−1 is a global cross section of k.
2. Every covering of simply connected manifold is trivial.

trivial top let S be a topological space. The topology in which O = {∅, S} is
called the trivial topology.

truncated Kruskal spacetime refer to Kruskal spacetime
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U
umbilic A point p of M ⊂ M is umbilic provided there is a normal vector

z ∈ TpM⊥ such that
II(v, w) = 〈v, w〉z

for all v, w ∈ TpM . Then z is called the normal curvature vector of M at p.

underlying space of simplicial complex refer to polytope

uniform norm refer to L2 norm

unit n­ball Let M be a semi­Riemannian manifold. The unit n­ball Bn is the
set of all points p in M for which |p| ≤ 1.

unit sphere LetM be a semi­Riemannian manifold. The unit sphere Sn−1 is the
set of all points p in M for which |p| = 1.

universal anti­de Sitter spacetime The four­dimensional nonflat Minkowski

space H̃4
1 (r) is universal anti­de Sitter spacetime .

universal constant in Einstein field equation refer to Einstein field equation

upper hemisphere refer to hemisphere
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V
vacuum If the stress­energy tensor T of a manifold M is zero, that is, if M is

Ricci flat, then M is said to be vacuum.

variation A variation of a curve segment α : [a, b]−→M is a two­parameter
mapping

x : [a, b]× (−δ, δ)−→M
such that α(u) = x(u, 0) for all a ≤ u ≤ b. The u­parameter curves of
a variation are called longitudinal and the v­parameter curves transversal.
The base curve of x is α.

(first) variation formula Let α : [a, b]−→M be a piecewise smooth curve seg­
ment with constant speed c > 0 and sign ε. If x is a variation of α,
then

L′(0) = −ε
c

∫ b

a

〈α′′, V 〉du− ε

c

k∑

i=1

〈△α′(ui), V (ui)〉+
ε

c
〈α′, V 〉

∣∣∣
b

a
,

where u1 < · · · < uk are the breaks of α and x.
cf. Synge’s formula for second variation

vector bundle A k­vector bundle (E, π) over a manifoldM consists of a manifold
E and a smooth map π : E−→M such that

i. each π−1(p), p ∈M is a k­dimensional vector space ,

ii. for each p ∈ M , there is a neighborhood U of p in M and a diffeo­
morphism φ : U × Rk−→π−1(U) ⊂ E such that for each q ∈ U , the
map v→φ(q, v) is a linear isomorphism from Rk onto π−1(q).

From above, M is called the base manifold, E the total manifold, π the
projection, π−1(p) the fiber over p, Rk the standard fiber, and φ a bundle chart
of the given bundle.

R

U

EU x Rk k

U

v

q

φ
(q,v)

π

π

(U)

-1

φ(q,v)

q

π

-1

(q)
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vector field A vector field V on a manifoldM is a function that assigns a tangent
vector Vp to M at p to each point p ∈M .
A vector field Z on a smooth map φ : P−→M is a mapping Z : P−→TM
such that π ◦ Z = φ, where π is the projection TM→M .

P M

TM
π

φ

Z

velocity vector The velocity vector of a curve α : I−→M at t ∈ I is

α′(t) = dα

(
d

du

∣∣∣∣
t

)
∈ Tα(t)M.

vertex scheme If K is a simplicial complex, let V be the vertex set of K . Let
K be the collection of all subsets {a0, . . . , an} of V such that the vertices
a0, . . . , an span a simplex ofK . The collectionK is called the vertex scheme
of K .

vertex of n­simplex refer to 1. n­simplex
2. skeleton

vertex set refer to abstract simplicial complex

viral function refer to momentum function

viral theorem Let M be a semi­Riemannian manifold, K the kinetic energy
function and V : M−→R a given potential. Let

L(v) = K(v)− V (τMv)

be usual Lagrangian and τM : TM−→M the canonical projection. Let X
be a vector field on M and e a regular value of E. Assume the level set
Σe at e is compact. The the time and space averages of G(X) on Σe are
both zero.

volume element A volume element on an n­dimensional semi­Riemannian
manifold M is a smooth n­form ω such that ω(e1, . . . , en) = ±1 for every
frame on M .
facta. 1. Volume elements always exist at least locally.
2. A semi­Riemannian manifold M has a (global) volume element if and
only if M is orientable .
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W
warped product Let B and F be semi­Riemannian manifolds and let f > 0 be

a smooth function on B. The warped product M = B ×f F is the product
manifold B × F furnished with metric tensor

g = π⋆(gB) + (f ◦ π)2σ⋆(gF ),

where π and σ are the projections of B × F , respectively. The function f
is called warping function .

B x  F
Ff

leaf

fiber

(p,q)

p

q
σ

π

B

warping function refer to warped product

wedge product refer to exterior algebra

worldline A worldline in Newtonian spacetime is a one­dimensional subman­
ifold W such that T |W is a diffeomorphism onto an interval I ⊂ R1.

worldlines
R
(time)

1

not a
worldline

non-
accelerating

E(space)
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Z
zig­zag lemma Suppose one is given chain complexes C = {Cp, ∂C}, D =

{Dp, ∂D} and E = {E, ∂E}, and chain maps φ, ψ such that the sequence

0−→C φ−→D ψ−→E−→0

is exact. Then there is a long exact homology sequence

· · · −→Hp(C) φ⋆−→Hp(D)
ψ⋆−→Hp(E) ∂⋆−→Hp−1(C) φ⋆−→Hp−1(D)−→· · · ,

where ∂⋆ is induced by the boundary operator in D.
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